Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew P. DeLisa is active.

Publication


Featured researches published by Matthew P. DeLisa.


Journal of Bacteriology | 2001

DNA Microarray-Based Identification of Genes Controlled by Autoinducer 2-Stimulated Quorum Sensing in Escherichia coli

Matthew P. DeLisa; Chi-Fang Wu; Liang Wang; James J. Valdes; William E. Bentley

Bacterial cell-to-cell communication facilitates coordinated expression of specific genes in a growth rate-II and cell density-dependent manner, a process known as quorum sensing. While the discovery of a diffusible Escherichia coli signaling pheromone, termed autoinducer 2 (AI-2), has been made along with several quorum sensing genes, the overall number and coordination of genes controlled by quorum sensing through the AI-2 signal has not been studied systematically. We investigated global changes in mRNA abundance elicited by the AI-2 signaling molecule through the use of a luxS mutant that was unable to synthesize AI-2. Remarkably, 242 genes, comprising ca. 5.6% of the E. coli genome, exhibited significant transcriptional changes (either induction or repression) in response to a 300-fold AI-2 signaling differential, with many of the identified genes displaying high induction levels (more than fivefold). Significant induction of ygeV, a putative sigma(54)-dependent transcriptional activator, and yhbH, a sigma(54) modulating protein, suggests sigma(54) may be involved in E. coli quorum sensing.


Lab on a Chip | 2006

A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis

Jinpian Diao; Lincoln C. Young; Sue Kim; Elizabeth A. Fogarty; Steven Heilman; Peng Zhou; Michael L. Shuler; Mingming Wu; Matthew P. DeLisa

We have developed a prototype three-channel microfluidic chip that is capable of generating a linear concentration gradient within a microfluidic channel and is useful in the study of bacterial chemotaxis. The linear chemical gradient is established by diffusing a chemical through a porous membrane located in the side wall of the channel and can be established without through-flow in the channel where cells reside. As a result, movement of the cells in the center channel is caused solely by the cells chemotactic response and not by variations in fluid flow. The advantages of this microfluidic chemical linear gradient generator are (i) its ability to produce a static chemical gradient, (ii) its rapid implementation, and (iii) its potential for highly parallel sample processing. Using this device, wildtype Escherichia coli strain RP437 was observed to move towards an attractant (e.g., l-asparate) and away from a repellent (e.g., glycerol) while derivatives of RP437 that were incapable of motility or chemotaxis showed no bias of the bacterias distribution. Additionally, the degree of chemotaxis could be easily quantified using this assay in conjunction with fluorescence imaging techniques, allowing for estimation of the chemotactic partition coefficient (CPC) and the chemotactic migration coefficient (CMC). Finally, using this approach we demonstrate that E. coli deficient in autoinducer-2-mediated quorum sensing respond to the chemoattractant l-aspartate in a manner that is indistinguishable from wildtype cells suggesting that chemotaxis is insulated from this mode of cell-cell communication.


Journal of Bacteriology | 2004

Phage Shock Protein PspA of Escherichia coli Relieves Saturation of Protein Export via the Tat Pathway

Matthew P. DeLisa; Philip A. Lee; Tracy Palmer; George Georgiou

Overexpression of either heterologous or homologous proteins that are routed to the periplasm via the twin-arginine translocation (Tat) pathway results in a block of export and concomitant accumulation of the respective protein precursor in the cytoplasm. Screening of a plasmid-encoded genomic library for mutants that confer enhanced export of a TorA signal sequence (ssTorA)-GFP-SsrA fusion protein, and thus result in higher cell fluorescence, yielded the pspA gene encoding phage shock protein A. Coexpression of pspA relieved the secretion block observed with ssTorA-GFP-SsrA or upon overexpression of the native Tat proteins SufI and CueO. A similar effect was observed with the Synechocystis sp. strain PCC6803 PspA homologue, VIPP1, indicating that the role of PspA in Tat export may be phylogenetically conserved. Mutations in Tat components that completely abolish export result in a marked induction of PspA protein synthesis, consistent with its proposed role in enhancing protein translocation via Tat.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Delivery of foreign antigens by engineered outer membrane vesicle vaccines

David J. Chen; Nikolaus Osterrieder; Stephan M. Metzger; Elizabeth L. Buckles; Anne M. Doody; Matthew P. DeLisa; David Putnam

As new disease threats arise and existing pathogens grow resistant to conventional interventions, attention increasingly focuses on the development of vaccines to induce protective immune responses. Given their admirable safety records, protein subunit vaccines are attractive for widespread immunization, but their disadvantages include poor immunogenicity and expensive manufacture. We show here that engineered Escherichia coli outer membrane vesicles (OMVs) are an easily purified vaccine-delivery system capable of greatly enhancing the immunogenicity of a low-immunogenicity protein antigen without added adjuvants. Using green-fluorescent protein (GFP) as the model subunit antigen, genetic fusion of GFP with the bacterial hemolysin ClyA resulted in a chimeric protein that elicited strong anti-GFP antibody titers in immunized mice, whereas immunization with GFP alone did not elicit such titers. Harnessing the specific secretion of ClyA to OMVs, the ClyA-GFP fusion was found localized in OMVs, resulting in engineered recombinant OMVs. The anti-GFP humoral response in mice immunized with the engineered OMV formulations was indistinguishable from the response to the purified ClyA-GFP fusion protein alone and equal to purified proteins absorbed to aluminum hydroxide, a standard adjuvant. In a major improvement over current practice, engineered OMVs containing ClyA-GFP were easily isolated by ultracentrifugation, effectively eliminating the need for laborious antigen purification from cell-culture expression systems. With the diverse collection of heterologous proteins that can be functionally localized with OMVs when fused with ClyA, this work signals the possibility of OMVs as a robust and tunable technology platform for a new generation of prophylactic and therapeutic vaccines.


Nature Chemical Biology | 2012

An engineered eukaryotic protein glycosylation pathway in Escherichia coli

Juan D Valderrama-Rincon; Adam C. Fisher; Judith H. Merritt; Yao-Yun Fan; Craig A. Reading; Krishan Chhiba; Christian Heiss; Parastoo Azadi; Markus Aebi; Matthew P. DeLisa

We performed bottom-up engineering of a synthetic pathway in Escherichia coli for the production of eukaryotic trimannosyl chitobiose glycans and the transfer of these glycans to specific asparagine residues in target proteins. The glycan biosynthesis was enabled by four eukaryotic glycosyltransferases, including the yeast uridine diphosphate-N-acetylglucosamine transferases Alg13 and Alg14 and the mannosyltransferases Alg1 and Alg2. By including the bacterial oligosaccharyltransferase PglB from Campylobacter jejuni, we successfully transferred glycans to eukaryotic proteins.


Journal of Bacteriology | 2001

Mapping Stress-Induced Changes in Autoinducer AI-2 Production in Chemostat-Cultivated Escherichia coli K-12

Matthew P. DeLisa; James J. Valdes; William E. Bentley

Numerous gram-negative bacteria employ a cell-to-cell signaling mechanism, termed quorum sensing, for controlling gene expression in response to population density. Recently, this phenomenon has been discovered in Escherichia coli, and while pathogenic E. coli utilize quorum sensing to regulate pathogenesis (i.e., expression of virulence genes), the role of quorum sensing in nonpathogenic E. coli is less clear, and in particular, there is no information regarding the role of quorum sensing during the overexpression of recombinant proteins. The production of autoinducer AI-2, a signaling molecule employed by E. coli for intercellular communication, was studied in E. coli W3110 chemostat cultures using a Vibrio harveyi AI-2 reporter assay (M. G. Surrette and B. L. Bassler, Proc. Natl. Acad. Sci. USA 95:7046-7050, 1998). Chemostat cultures enabled a study of AI-2 regulation through steady-state and transient responses to a variety of environmental stimuli. Results demonstrated that AI-2 levels increased with the steady-state culture growth rate. In addition, AI-2 increased following pulsed addition of glucose, Fe(III), NaCl, and dithiothreitol and decreased following aerobiosis, amino acid starvation, and isopropyl-beta-D-thiogalactopyranoside-induced expression of human interleukin-2 (hIL-2). In general, the AI-2 responses to several perturbations were indicative of a shift in metabolic activity or state of the cells induced by the individual stress. Because of our interest in the expression of heterologous proteins in E. coli, the transcription of four quorum-regulated genes and 20 stress genes was mapped during the transient response to induced expression of hIL-2. Significant regulatory overlap was revealed among several stress and starvation genes and known quorum-sensing genes.


Protein Science | 2006

Genetic selection for protein solubility enabled by the folding quality control feature of the twin-arginine translocation pathway

Adam C. Fisher; Woojin Kim; Matthew P. DeLisa

One of the most vexing problems facing structural genomics efforts and the biotechnology enterprise in general is the inability to efficiently produce functional proteins due to poor folding and insolubility. Additionally, protein misfolding and aggregation has been linked to a number of human diseases, such as Alzheimers. Thus, a robust cellular assay that allows for direct monitoring, manipulation, and improvement of protein folding could have a profound impact. We report the development and characterization of a genetic selection for protein folding and solubility in living bacterial cells. The basis for this assay is the observation that protein transport through the bacterial twin‐arginine translocation (Tat) pathway depends on correct folding of the protein prior to transport. In this system, a test protein is expressed as a tripartite fusion between an N‐terminal Tat signal peptide and a C‐terminal TEM1 β‐lactamase reporter protein. We demonstrate that survival of Escherichia coli cells on selective medium expressing a Tat‐targeted test protein/β‐lactamase fusion correlates with the solubility of the test protein. Using this assay, we isolated solubility‐enhanced variants of the Alzheimers Aβ42 peptide from a large combinatorial library of Aβ42 sequences, thereby confirming that our assay is a highly effective selection tool for soluble proteins. By allowing the bacterial Tat pathway to exert folding quality control on expressed target protein sequences, we have generated a powerful tool for monitoring protein folding and solubility in living cells, for molecular engineering of solubility‐enhanced proteins or for the isolation of factors and/or cellular conditions that stabilize aggregation‐prone proteins.


Journal of Biological Chemistry | 2007

Export Pathway Selectivity of Escherichia coli Twin Arginine Translocation Signal Peptides

Danielle Tullman-Ercek; Matthew P. DeLisa; Yasuaki Kawarasaki; Pooya Iranpour; Brian Ribnicky; Tracy Palmer; George Georgiou

The Escherichia coli genome encodes at least 29 putative signal peptides containing a twin arginine motif characteristic of proteins exported via the twin arginine translocation (Tat) pathway. Fusions of the putative Tat signal peptides plus six to eight amino acids of the mature proteins to three reporter proteins (short-lived green fluorescent protein, maltose-binding protein (MBP), and alkaline phosphatase) and also data from the cell localization of epitope-tagged full-length proteins were employed to determine the ability of the 29 signal peptides to direct export through the Tat pathway, through the general secretory pathway (Sec), or through both. 27/29 putative signal peptides could export one or more reporter proteins through Tat. Of these, 11 signal peptides displayed Tat specificity in that they could not direct the export of Sec-only reporter proteins. The rest (16/27) were promiscuous and were capable of directing export of the appropriate reporter either via Tat (green fluorescent protein, MBP) or via Sec (PhoA, MBP). Mutations that conferred a ≥+1 charge to the N terminus of the mature protein abolished or drastically reduced routing through the Sec pathway without affecting the ability to export via the Tat pathway. These experiments demonstrate that the charge of the mature protein N terminus affects export promiscuity, independent of the effect of the folding state of the mature protein.


Molecular Microbiology | 2011

Envelope stress is a trigger of CRISPR RNA‐mediated DNA silencing in Escherichia coli

Ritsdeliz Perez-Rodriguez; Charles Haitjema; Qingqiu Huang; Ki Hyun Nam; Sarah Bernardis; Ailong Ke; Matthew P. DeLisa

A widespread feature in the genomes of most bacteria and archaea is an array of clustered, regularly interspaced short palindromic repeats (CRISPRs) that, together with a group of CRISPR‐associated (Cas) proteins, mediate immunity against invasive nucleic acids such as plasmids and viruses. Here, the CRISPR‐Cas system was activated in cells expressing a plasmid‐encoded protein that was targeted to the twin‐arginine translocation (Tat) pathway. Expression of this Tat substrate resulted in upregulation of the Cas enzymes and subsequent silencing of the encoding plasmid in a manner that required the BaeSR two‐component regulatory system, which is known to respond to extracytoplasmic stress. Furthermore, we confirm that the CasCDE enzymes form a stable ternary complex and appear to function as the catalytic core of the Cas system to process CRISPR RNA into its mature form. Taken together, our results indicate that the CRISPR‐Cas system targets DNA directly as part of a defence mechanism in bacteria that is overlapping with but not limited to phage infection.


Applied and Environmental Microbiology | 2011

Production of Secretory and Extracellular N-Linked Glycoproteins in Escherichia coli†

Adam C. Fisher; Charles Haitjema; Cassandra Guarino; Eda Çelik; Christine E. Endicott; Craig A. Reading; Judith H. Merritt; A. Celeste Ptak; Sheng Zhang; Matthew P. DeLisa

ABSTRACT The Campylobacter jejuni pgl gene cluster encodes a complete N-linked protein glycosylation pathway that can be functionally transferred into Escherichia coli. In this system, we analyzed the interplay between N-linked glycosylation, membrane translocation and folding of acceptor proteins in bacteria. We developed a recombinant N-glycan acceptor peptide tag that permits N-linked glycosylation of diverse recombinant proteins expressed in the periplasm of glycosylation-competent E. coli cells. With this “glycosylation tag,” a clear difference was observed in the glycosylation patterns found on periplasmic proteins depending on their mode of inner membrane translocation (i.e., Sec, signal recognition particle [SRP], or twin-arginine translocation [Tat] export), indicating that the mode of protein export can influence N-glycosylation efficiency. We also established that engineered substrate proteins targeted to environments beyond the periplasm, such as the outer membrane, the membrane vesicles, and the extracellular medium, could serve as substrates for N-linked glycosylation. Taken together, our results demonstrate that the C. jejuni N-glycosylation machinery is compatible with distinct secretory mechanisms in E. coli, effectively expanding the N-linked glycome of recombinant E. coli. Moreover, this simple glycosylation tag strategy expands the glycoengineering toolbox and opens the door to bacterial synthesis of a wide array of recombinant glycoprotein conjugates.

Collaboration


Dive into the Matthew P. DeLisa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge