Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew P. Fitzgerald is active.

Publication


Featured researches published by Matthew P. Fitzgerald.


Breast Cancer Research | 2005

Epigenetic silencing of DSC3 is a common event in human breast cancer

Marc M. Oshiro; Christina Kim; Ryan J. Wozniak; Damian J Junk; José L. Muñoz-Rodríguez; Jeanne A. Burr; Matthew P. Fitzgerald; Sangita C. Pawar; Anne E. Cress; Frederick E. Domann; Bernard W. Futscher

IntroductionDesmocollin 3 (DSC3) is a member of the cadherin superfamily of calcium-dependent cell adhesion molecules and a principle component of desmosomes. Desmosomal proteins such as DSC3 are integral to the maintenance of tissue architecture and the loss of these components leads to a lack of adhesion and a gain of cellular mobility. DSC3 expression is down-regulated in breast cancer cell lines and primary breast tumors; however, the loss of DSC3 is not due to gene deletion or gross rearrangement of the gene. In this study, we examined the prevalence of epigenetic silencing of DSC3 gene expression in primary breast tumor specimens.MethodsWe used bisulfite genomic sequencing to analyze the methylation state of the DSC3 promoter region from 32 primary breast tumor specimens. We also used a quantitative real-time RT-PCR approach, and analyzed all breast tumor specimens for DSC3 expression. Finally, in addition to bisulfite sequencing and RT-PCR, we used an in vivo nuclease accessibility assay to determine the chromatin architecture of the CpG island region from DSC3-negative breast cancer cells lines.ResultsDSC3 expression was downregulated in 23 of 32 (72%) breast cancer specimens comprising: 22 invasive ductal carcinomas, 7 invasive lobular breast carcinomas, 2 invasive ductal carcinomas that metastasized to the lymph node, and a mucoid ductal carcinoma. Of the 23 specimens showing a loss of DSC3 expression, 13 (56%) were associated with cytosine hypermethylation of the promoter region. Furthermore, DSC3 expression is limited to cells of epithelial origin and its expression of mRNA and protein is lost in a high proportion of breast tumor cell lines (79%). Lastly, DNA hypermethylation of the DSC3 promoter is highly correlated with a closed chromatin structure.ConclusionThese results indicate that the loss of DSC3 expression is a common event in primary breast tumor specimens, and that DSC3 gene silencing in breast tumors is frequently linked to aberrant cytosine methylation and concomitant changes in chromatin structure.


Cancer Research | 2009

Overexpression of extracellular superoxide dismutase attenuates heparanase expression and inhibits breast carcinoma cell growth and invasion

Melissa L. T. Teoh; Matthew P. Fitzgerald; Larry W. Oberley; Frederick E. Domann

Increased expression of heparanase stimulates the progression of various human cancers, including breast cancer. Therefore, a deeper understanding of the mechanisms involved in regulating heparanase is critical in developing effective treatments for heparanase-overexpressing cancers. In this study, we investigated the potential use of extracellular superoxide dismutase (EcSOD) to enhance the inhibitory effects of heparin/low molecular weight heparin (LMWH) in breast cancer cells. EcSOD binds to cell surfaces and the extracellular matrix through heparin-binding domain (HBD). Deleting this HBD rendered the protein a more potent inhibitor of breast cancer growth, survival, and invasion. Among the treatment combinations examined, EcSODDeltaHBD plus LMWH provided the best tumor suppressive effects in inhibiting breast cancer growth and invasion in vitro. We have further shown that overexpression of EcSOD decreased accumulation of vascular endothelial growth factor in the culture medium and increased the level of intact cell surface-associated heparan sulfate, thus implicating inhibition of heparanase expression as a potential mechanism. Overexpression of EcSOD inhibited steady-state heparanase mRNA levels by >50% as determined by quantitative reverse transcription-PCR. Moreover, heparanase promoter activation was suppressed by EcSOD as indicated by a luciferase reporter assay. These findings reveal a previously unrecognized molecular pathway showing that regulation of heparanase transcription can be mediated by oxidative stress. Our study implies that overexpression of EcSOD is a promising strategy to enhance the efficacy of heparin/LMWH by inhibiting heparanase as a novel treatment for breast cancer.


Molecular Cancer Research | 2012

Genetic and Epigenetic Inactivation of Extracellular Superoxide Dismutase Promotes an Invasive Phenotype in Human Lung Cancer by Disrupting ECM Homeostasis

Melissa Teoh-Fitzgerald; Matthew P. Fitzgerald; Taylor J. Jensen; Bernard W. Futscher; Frederick E. Domann

Extracellular superoxide dismutase (EcSOD) is an important superoxide scavenger in the lung in which its loss, sequence variation, or abnormal expression contributes to lung diseases; however, the role of EcSOD in lung cancer has yet to be studied. We hypothesized that EcSOD loss could affect malignant progression in lung, and could be either genetic or epigenetic in nature. To test this, we analyzed EcSOD expression, gene copy number, promoter methylation, and chromatin accessibility in normal lung and carcinoma cells. We found that normal airway epithelial cells expressed abundant EcSOD and had an unmethylated promoter, whereas EcSOD-negative lung cancer cells displayed aberrant promoter hypermethylation and decreased chromatin accessibility. 5-aza-dC induced EcSOD suggesting that cytosine methylation was causal, in part, to silencing. In 48/50 lung tumors, EcSOD mRNA was significantly lower as early as stage I, and the EcSOD promoter was hypermethylated in 8/10 (80%) adenocarcinomas compared with 0/5 normal lung samples. In addition, 20% of the tumors showed loss of heterozygosity (LOH) of EcSOD. Reexpression of EcSOD attenuated the malignant phenotype of lung carcinoma cells by significantly decreasing invasion and survival. Finally, EcSOD decreased heparanase and syndecan-1 mRNAs in part by reducing NF-κB. By contrast, MnSOD and CuZnSOD showed no significant changes in lung tumors and had no effect on heparanase expression. Taken together, the loss of EcSOD expression is unique among the superoxide dismutases in lung cancer and is the result of EcSOD promoter methylation and LOH, suggesting that its early loss may contribute to ECM remodeling and malignant progression. Mol Cancer Res; 10(1); 40–51. ©2011 AACR.


Oncogene | 2014

Epigenetic reprogramming governs EcSOD expression during human mammary epithelial cell differentiation, tumorigenesis and metastasis

Melissa Teoh-Fitzgerald; Matthew P. Fitzgerald; Weixiong Zhong; Rw Askeland; Frederick E. Domann

Expression of the antioxidant enzyme EcSOD in normal human mammary epithelial cells was not recognized until recently. Although expression of EcSOD was not detectable in non-malignant human mammary epithelial cells (HMEC) cultured in conventional two-dimensional (2D) culture conditions, EcSOD protein expression was observed in normal human breast tissues, suggesting that the 2D-cultured condition induces a repressive status of EcSOD gene expression in HMEC. With the use of laminin-enriched extracellular matrix (lrECM), we were able to detect expression of EcSOD when HMEC formed polarized acinar structures in a 3D-culture condition. Repression of the EcSOD-gene expression was again seen when the HMEC acini were sub-cultured as a monolayer, implying that lrECM-induced acinar morphogenesis is essential in EcSOD-gene activation. We have further shown the involvement of DNA methylation in regulating EcSOD expression in HMEC under these cell culture conditions. EcSOD mRNA expression was strongly induced in the 2D-cultured HMEC after treatment with a DNA methyltransferase inhibitor. In addition, epigenetic analyses showed a decrease in the degree of CpG methylation in the EcSOD promoter in the 3D versus 2D-cultured HMEC. More importantly, >80% of clinical mammary adenocarcinoma samples showed significantly decreased EcSOD mRNA and protein expression levels compared with normal mammary tissues and there is an inverse correlation between the expression levels of EcSOD and the clinical stages of breast cancer. Combined bisulfite restriction analysis analysis of some of the tumors also revealed an association of DNA methylation with the loss of EcSOD expression in vivo. Furthermore, overexpression of EcSOD inhibited breast cancer metastasis in both the experimental lung metastasis model and the syngeneic mouse model. This study suggests that epigenetic silencing of EcSOD may contribute to mammary tumorigenesis and that restoring the extracellular superoxide scavenging activity could be an effective strategy for breast cancer treatment.


Journal of Biological Chemistry | 2007

A Novel Nuclear Interactor of ARF and MDM2 (NIAM) That Maintains Chromosomal Stability

Van S. Tompkins; Jussara Hagen; April A. Frazier; Tamara Lushnikova; Matthew P. Fitzgerald; Anne di Tommaso; Véronique Ladeveze; Frederick E. Domann; Christine M. Eischen; Dawn E. Quelle

The ARF tumor suppressor signals through p53 and other poorly defined anti-proliferative pathways to block carcinogenesis. In a search for new regulators of ARF signaling, we discovered a novel nuclear protein that we named NIAM (nuclear interactor of ARF and MDM2) for its ability to bind both ARF and the p53 antagonist MDM2. NIAM protein is normally expressed at low to undetectable levels in cells because of, at least in part, MDM2-mediated ubiquitination and proteasomal degradation. When reintroduced into cells, NIAM activated p53, caused a G1 phase cell cycle arrest, and collaborated with ARF in an additive fashion to suppress proliferation. Notably, NIAM retains growth inhibitory activity in cells lacking ARF and/or p53, and knockdown experiments revealed that it is not essential for ARF-mediated growth inhibition. Thus, NIAM and ARF act in separate anti-proliferative pathways that intersect mechanistically and suppress growth more effectively when jointly activated. Intriguingly, silencing of NIAM accelerated chromosomal instability, and microarray analyses showed reduced NIAM mRNA expression in numerous primary human tumors. This study identifies a novel protein with tumor suppressor-like behaviors and functional links to ARF-MDM2-p53 signaling.


PLOS ONE | 2011

Aberrant promoter CpG methylation is a mechanism for impaired PHD3 expression in a diverse set of malignant cells.

Trenton L. Place; Matthew P. Fitzgerald; Sujatha Venkataraman; Sabine U. Vorrink; Adam J. Case; Melissa L. T. Teoh; Frederick E. Domann

Background The prolyl-hydroxylase domain family of enzymes (PHD1-3) plays an important role in the cellular response to hypoxia by negatively regulating HIF-α proteins. Disruption of this process can lead to up-regulation of factors that promote tumorigenesis. We observed decreased basal expression of PHD3 in prostate cancer tissue and tumor cell lines representing diverse tissues of origin. Furthermore, some cancer lines displayed a failure of PHD3 mRNA induction when introduced to a hypoxic environment. This study explores the mechanism by which malignancies neither basally express PHD3 nor induce PHD3 under hypoxic conditions. Methodology/Principal Findings Using bisulfite sequencing and methylated DNA enrichment procedures, we identified human PHD3 promoter hypermethylation in prostate, breast, melanoma and renal carcinoma cell lines. In contrast, non-transformed human prostate and breast epithelial cell lines contained PHD3 CpG islands that were unmethylated and responded normally to hypoxia by upregulating PHD3 mRNA. Only treatment of cells lines containing PHD3 promoter hypermethylation with the demethylating drug 5-aza-2′-deoxycytidine significantly increased the expression of PHD3. Conclusions/Significance We conclude that expression of PHD3 is silenced by aberrant CpG methylation of the PHD3 promoter in a subset of human carcinoma cell lines of diverse origin and that this aberrant cytosine methylation status is the mechanism by which these cancer cell lines fail to upregulate PHD3 mRNA. We further show that a loss of PHD3 expression does not correlate with an increase in HIF-1α protein levels or an increase in the transcriptional activity of HIF, suggesting that loss of PHD3 may convey a selective advantage in some cancers by affecting pathway(s) other than HIF.


Sarcoma | 2011

Human chondrosarcoma cells acquire an epithelial-like gene expression pattern via an epigenetic switch: Evidence for mesenchymal-epithelial transition during sarcomagenesis

Matthew P. Fitzgerald; Francoise A. Gourronc; Melissa L. T. Teoh; Matthew J. Provenzano; Adam J. Case; James A. Martin; Frederick E. Domann

Chondrocytes are mesenchymally derived cells that reportedly acquire some epithelial characteristics; however, whether this is a progression through a mesenchymal to epithelial transition (MET) during chondrosarcoma development is still a matter of investigation. We observed that chondrosarcoma cells acquired the expression of four epithelial markers, E-cadherin,desmocollin 3, maspin, and 14-3-3σ, all of which are governed epigenetically through cytosine methylation. Indeed, loss of cytosine methylation was tightly associated with acquired expression of both maspin and 14-3-3σ in chondrosarcomas. In contrast, chondrocyte cells were negative for maspin and 14-3-3σ and displayed nearly complete DNA methylation. Robust activation of these genes was also observed in chondrocyte cells following 5-aza-dC treatment. We also examined the transcription factor snail which has been reported to be an important mediator of epithelial to mesenchymal transitions (EMTs). In chondrosarcoma cells snail is downregulated suggesting a role for loss of snail expression in lineage maintenance. Taken together, these results document an epigenetic switch associated with an MET-like phenomenon that accompanies chondrosarcoma progression.


Cancer Letters | 2008

Regulation of 14-3-3σ expression in human thyroid carcinoma is epigenetically regulated by aberrant cytosine methylation

Geeta Lal; Lakshmi Padmanabha; Matthew J. Provenzano; Matthew P. Fitzgerald; Jamie Weydert; Frederick E. Domann

Increased 14-3-3sigma expression has been observed by immunohistochemistry in papillary and anaplastic tumors, but not follicular thyroid cancers. 14-3-3sigma mRNA expression and methylation status was examined in tumor cell lines and primary thyroid tissues using real-time RT-PCR, bisulfite sequencing and methylation-specific PCR. Most of the 27 CpGs in the genes CpG island were methylated in normal thyroid, TPC-1, NPA, FTC-238 and 2-7, which did not express 14-3-3sigma. In contrast, they were unmethylated in KAK-1 and anaplastic lines KAT4 and DRO-90. 14-3-3sigma expression was not increased in thyroid carcinomas, the majority of which had a methylated CpG island. In addition, 5-aza-dC treatment increased 14-3-3sigma expression in the FTC-238 and NPA cell lines, which had low baseline expression. We conclude 14-3-3sigma expression in thyroid carcinomas is regulated by CpG island hypermethylation.


Radiation Research | 2010

Transgenic biosynthesis of trypanothione protects Escherichia coli from radiation-induced toxicity.

Matthew P. Fitzgerald; Joshua M. Madsen; Mitchell C. Coleman; Melissa L. T. Teoh; Scott G. Westphal; Douglas R. Spitz; Rafael Radi; Frederick E. Domann

Abstract Trypanothione is a unique diglutathionyl-spermidine conjugate found in abundance in trypanosomes but not in other eukaryotes. Because trypanothione is a naturally occurring polyamine thiol reminiscent of the synthetic drug amifostine, it may be a useful protector against radiation and oxidative stress. For these reasons we hypothesized that trypanothione might serve as a radioprotective agent when produced in bacteria. To accomplish this objective, the trypanothione synthetase and reductase genes from T. cruzi were introduced into E. coli and their expression was verified by qPCR and immunoblotting. Trypanothione synthesis in bacteria, detected by HPLC, resulted in decreased intracellular levels of reactive oxygen species as determined by H2DCFDA oxidation. Moreover, E. coli genomic DNA was protected from radiation-induced DNA damage by 4.6-fold in the presence of trypanothione compared to control bacteria. Concordantly, the transgenic E. coli expressing trypanothione were 4.3-fold more resistant to killing by 137Cs &ggr; radiation compared to E. coli devoid of trypanothione expression. Thus we have shown for the first time that E. coli can be genetically engineered to express the trypanothione biosynthetic pathway and produce trypanothione, which results in their radioresistance. These results warrant further research to explore the possibility of developing trypanothione as a novel radioprotective agent.


Cancer Research | 2012

Abstract 712: Parf-1A (Partner of ARF isoform 1A) promotes oxaliplatin resistance and is a new prognostic marker of survival in pancreatic ductal adenocarcinoma

Viviane P. Muniz; Xuefeng Zhang; Sara M. Reed; Van S. Tompkins; Tarik Smith; Jussara Hagen; Matthew P. Fitzgerald; Anna Button; Brian J. Smith; Kokou D. Zamba; Frederick E. Domann; James J. Mezhir; Jamie Weydert; Ryan A. Askeland; Dawn E. Quelle

Pancreatic ductal adenocarcinoma (PDAC) is an incurable malignancy with ineffective treatments and dismal median survival. The INK4a/ARF locus, which encodes the alternative reading frame (ARF) tumor suppressor, is commonly inactivated in PDAC tumors. We recently discovered Parf-1A, a novel “Partner of ARF” whose role in ARF signaling and tumorigenesis is not known. Parf-1A is highly expressed in the normal pancreas and microarray databases suggest Parf expression is altered (both up- and down-regulated) in human PDAC tumors. We generated Parf-1A specific antibodies and examined its protein levels by immunohistochemistry in PDAC tumors from patients who underwent resective surgery. Parf-1A expression was altered in 72% of tumors (33% reduced, 39% elevated) compared to adjacent normal ductal tissue. Tumors with the highest Parf-1A levels were significantly associated with poor patient outcome (median survival 6 months) while patients with undetectable Parf-1A in tumors had a dramatically extended lifespan (median survival 59 months, p=0.0037). Notably, Parf-1A knockdown in cultured PDAC cells increased the p53-independent growth inhibitory activity of ARF. Parf-1A loss also sensitized PDAC cells to oxaliplatin, a chemotherapeutic agent used in combination with gemcitabine to treat PDAC patients. This work identifies Parf-1A as a new inhibitor of ARF p53-independent activity that promotes PDAC chemoresistance in vitro and is a novel prognostic marker of survival in PDAC patients. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 712. doi:1538-7445.AM2012-712

Collaboration


Dive into the Matthew P. Fitzgerald's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam J. Case

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Christine M. Eischen

Vanderbilt University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge