Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew P. Fraser is active.

Publication


Featured researches published by Matthew P. Fraser.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Measurements of methane emissions at natural gas production sites in the United States

David T. Allen; Vincent M. Torres; James Thomas; David W. Sullivan; Matthew T. Harrison; Al Hendler; Scott C. Herndon; Charles E. Kolb; Matthew P. Fraser; A. Daniel Hill; Brian K. Lamb; Jennifer Lynne Miskimins; Robert F. Sawyer; John H. Seinfeld

Significance This work reports direct measurements of methane emissions at 190 onshore natural gas sites in the United States. The measurements indicate that well completion emissions are lower than previously estimated; the data also show emissions from pneumatic controllers and equipment leaks are higher than Environmental Protection Agency (EPA) national emission projections. Estimates of total emissions are similar to the most recent EPA national inventory of methane emissions from natural gas production. These measurements will help inform policymakers, researchers, and industry, providing information about some of the sources of methane emissions from the production of natural gas, and will better inform and advance national and international scientific and policy discussions with respect to natural gas development and use. Engineering estimates of methane emissions from natural gas production have led to varied projections of national emissions. This work reports direct measurements of methane emissions at 190 onshore natural gas sites in the United States (150 production sites, 27 well completion flowbacks, 9 well unloadings, and 4 workovers). For well completion flowbacks, which clear fractured wells of liquid to allow gas production, methane emissions ranged from 0.01 Mg to 17 Mg (mean = 1.7 Mg; 95% confidence bounds of 0.67–3.3 Mg), compared with an average of 81 Mg per event in the 2011 EPA national emission inventory from April 2013. Emission factors for pneumatic pumps and controllers as well as equipment leaks were both comparable to and higher than estimates in the national inventory. Overall, if emission factors from this work for completion flowbacks, equipment leaks, and pneumatic pumps and controllers are assumed to be representative of national populations and are used to estimate national emissions, total annual emissions from these source categories are calculated to be 957 Gg of methane (with sampling and measurement uncertainties estimated at ±200 Gg). The estimate for comparable source categories in the EPA national inventory is ∼1,200 Gg. Additional measurements of unloadings and workovers are needed to produce national emission estimates for these source categories. The 957 Gg in emissions for completion flowbacks, pneumatics, and equipment leaks, coupled with EPA national inventory estimates for other categories, leads to an estimated 2,300 Gg of methane emissions from natural gas production (0.42% of gross gas production).


Atmospheric Environment | 2002

Molecular composition of organic fine particulate matter in Houston, TX

Matthew P. Fraser; Z.W. Yue; Richard J. Tropp; Steven D. Kohl; Judith C. Chow

Organic fine particulate matter collected in Houston, TX between March 1997 and March 1998 was analyzed to determine the concentration of individual organic compounds. Samples from four sites were analyzed including two industrial locations (Houston Regional Monitoring Corporation (HRM-3) site in Channelview and Clinton Drive site near the Ship Channel Turning Basin), one suburban location (Bingle Drive site in Northwest Houston) and one background site (Galveston Island). At the three urban locations, samples were divided into three seasonal sample aggregates (spring, summer and winter), while at the background site a single annual average sample pool was used. Between 10 and 16 individual samples were pooled to get aggregate samples with enough organic carbon mass for analysis. Overall, 82 individual organic compounds were quantified. These include molecular markers which are compounds unique to specific fine particle sources and can be used to track the relative contribution of source emissions to ambient fine particle levels. The differences both spatially and temporally in these tracers can be used to evaluate the variability in emission source strengths.


Journal of Geophysical Research | 2002

Secondary organic aerosol 3. Urban/regional scale model of size- and composition-resolved aerosols

Robert J. Griffin; Donald Dabdub; Michael J. Kleeman; Matthew P. Fraser; Glen R. Cass; John H. Seinfeld

The California Institute of Technology (CIT) three-dimensional urban/regional atmospheric model is used to perform comprehensive gas- and aerosol-phase simulations of the 8 September 1993 smog episode in the South Coast Air Basin of California (SoCAB) using the atmospheric chemical mechanism of part 1 [Griffin et al., 2002] and the thermodynamic module of part 2 [Pun et al., 2002]. This paper focuses primarily on simulations of secondary organic aerosol (SOA) and determination of the species and processes that lead to this SOA. Meteorological data and a gas and particulate emissions inventory for this episode were supplied directly by the South Coast Air Quality Management District. A summer 1993 atmospheric sampling campaign provides data against which the performance of the model is evaluated. Predictions indicate that SOA formation in the SoCAB is dominated by partitioning of hydrophobic secondary products of the oxidation of anthropogenic organics. The biogenic contribution to total SOA increases in the more rural eastern portions of the region, as does the fraction of hydrophilic SOA, the latter reflecting the increasing degree of oxidation of SOA species with atmospheric residence time.


Aerosol Science and Technology | 2004

Daily, seasonal, and spatial trends in PM2.5 mass and composition in Southeast Texas

Matthew Russell; David T. Allen; Don R. Collins; Matthew P. Fraser

Daily, seasonal, and spatial trends in fine particulate matter concentrations, compositions, and size distributions were examined using data collected through the regulatory fine particulate matter monitoring network in Southeast Texas and during the Gulf Coast Aerosol Research and Characterization Study (GC-ARCH or Houston Supersite). PM2.5 mass concentrations and compositions are generally spatially homogeneous throughout Southeast Texas when averaged over annual or seasonal time periods. There is relatively little seasonality to mean total PM2.5 mass and mean PM2.5 composition throughout the region, although slightly higher concentrations of total mass tend to occur in the spring and late fall. High FRM PM2.5 mass (>20 μg/m3) occurs both when there is high spatial variability among sites and low spatial variability among sites. This suggests that both local and regional emission sources contribute to PM2.5 in Southeast Texas. Sulfate ion (32%), organic carbon (30%), and ammonium ion (9%) are the largest components on average of PM2.5 by mass. Mean diurnal patterns for PM2.5 mass concentrations throughout the region show a consistent morning peak and a weaker and slightly less consistent peak in the late afternoon to early evening. High hourly averaged PM2.5 mass concentrations (>40 μg/m3) tend to be associated with daily average PM2.5 above the annual NAAQS of 15 μg/m3. These high hourly PM2.5 concentrations also tend to occur on days with high diurnal variation, indicative of elevated, short-lived PM2.5 events. In contrast to mass concentrations, particle size distributions are not spatially homogeneous throughout Southeast Texas. Industrial sites have higher concentrations of freshly emitted, primary particles than more residential sites. Because the freshly emitted particles generally have diameters of 0.1 μm or less, these primary emissions do not have as large an impact on PM2.5 mass or bulk composition as they have on the number density of fine particles.


Atmospheric Environment | 2002

Statistical analysis of primary and secondary atmospheric formaldehyde

Stephen Friedfeld; Matthew P. Fraser; Katherine B. Ensor; Seth Tribble; Dirk Rehle; D. Leleux; Frank K. Tittel

Regression models coupled with time series data were used to analyze the contribution of primary and secondary sources to formaldehyde (HCHO) concentrations,as determined by statistical analogy to primary (carbon monoxide, CO) and secondary (ozone,O 3) compounds measured simultaneously in Houston,TX. Time series analyses substantiated the need for statistical methods of analysis,given the complexity of the data and the rapid fluctuations that occur in atmospheric concentrations. A positive relationship was found for both the auto-correlation function (ACF) and partial auto-correlation function (PACF) of HCHO with either CO or O3. Regression models used to distinguish primary and secondary contributions included a simple linear regression of the three compounds (one lag unit of time,5 min) on current HCHO concentrations,resulting in a ratio of secondary formation to primary emission of 1.7. A second,more robust model utilized auto-correlated error processes to approximate the true nature of the linear regression; this model also indicates the ratio of secondary to primary contribution at 1.7 as the mean of ten model simulations. From the error processes model,one lag unit of time was most significant for CO predicting HCHO, while simultaneous measurements (lag 0) were most significant for O3 predicting HCHO. Outlying O3 and HCHO concentrations were shown not to affect the results. r 2002 Elsevier Science Ltd. All rights reserved.


Environmental Science & Technology | 2015

Methane Emissions from Process Equipment at Natural Gas Production Sites in the United States: Pneumatic Controllers

David T. Allen; Adam P. Pacsi; David W. Sullivan; Daniel Zavala-Araiza; Matthew Harrison; Kindal Keen; Matthew P. Fraser; A. Daniel Hill; Robert F. Sawyer; John H. Seinfeld

Emissions from 377 gas actuated (pneumatic) controllers were measured at natural gas production sites and a small number of oil production sites, throughout the United States. A small subset of the devices (19%), with whole gas emission rates in excess of 6 standard cubic feet per hour (scf/h), accounted for 95% of emissions. More than half of the controllers recorded emissions of 0.001 scf/h or less during 15 min of measurement. Pneumatic controllers in level control applications on separators and in compressor applications had higher emission rates than controllers in other types of applications. Regional differences in emissions were observed, with the lowest emissions measured in the Rocky Mountains and the highest emissions in the Gulf Coast. Average methane emissions per controller reported in this work are 17% higher than the average emissions per controller in the 2012 EPA greenhouse gas national emission inventory (2012 GHG NEI, released in 2014); the average of 2.7 controllers per well observed in this work is higher than the 1.0 controllers per well reported in the 2012 GHG NEI.


Journal of The Air & Waste Management Association | 2005

Emissions of Organic Compounds and Trace Metals in Fine Particulate Matter from Motor Vehicles: A Tunnel Study in Houston, Texas

Shankararaman Chellam; Pranav Kulkarni; Matthew P. Fraser

Abstract Fine particulate matter (PM) samples collected in a highway tunnel in Houston, TX, were analyzed to quantify the concentrations of 14 n-alkanes, 12 polycyclic aromatic hydrocarbons, and nine petroleum biomarkers, as well as 21 metals, with the ultimate aim of identifying appropriate tracers for diesel engines. First, an exploratory multivariate dimensionality reduction technique called principal component analysis (PCA) was employed to identify all potential candidates for tracers. Next, emission indices were calculated to interpret PCA results physically. Emission indices of n-heneicosane, n-docosane, n-tricosane, n-tetracosane, n-pentacosane, fluoranthene, and pyrene were correlated highly and increased strongly with percentage carbon present in the tunnel emanating from diesel vehicles. This suggests that these organic compounds are useful molecular markers to separate emissions from diesel and gasoline engines. Additionally, the results are the first quantification of the metal composition of PM with aerodynamic diameters smaller than 2.5 [H9262]m (PM2.5) emissions from mobile sources in Houston. PCA of trace metal concentrations followed by emission index calculations revealed that barium in fine airborne particles can be linked quantitatively to diesel engine emissions, demonstrating its role as an elemental tracer for heavy-duty trucks.


Environmental Science & Technology | 2014

Illustrating Anticipatory Life Cycle Assessment for Emerging Photovoltaic Technologies

Ben A. Wender; Rider W. Foley; Valentina Prado-Lopez; Dwarakanath Ravikumar; Daniel A. Eisenberg; Troy A. Hottle; Jathan Sadowski; William Flanagan; Angela Fisher; Lise Laurin; Matthew E. Bates; Igor Linkov; Thomas P. Seager; Matthew P. Fraser; David H. Guston

Current research policy and strategy documents recommend applying life cycle assessment (LCA) early in research and development (R&D) to guide emerging technologies toward decreased environmental burden. However, existing LCA practices are ill-suited to support these recommendations. Barriers related to data availability, rapid technology change, and isolation of environmental from technical research inhibit application of LCA to developing technologies. Overcoming these challenges requires methodological advances that help identify environmental opportunities prior to large R&D investments. Such an anticipatory approach to LCA requires synthesis of social, environmental, and technical knowledge beyond the capabilities of current practices. This paper introduces a novel framework for anticipatory LCA that incorporates technology forecasting, risk research, social engagement, and comparative impact assessment, then applies this framework to photovoltaic (PV) technologies. These examples illustrate the potential for anticipatory LCA to prioritize research questions and help guide environmentally responsible innovation of emerging technologies.


Environmental Science & Technology | 2015

Methane Emissions from Process Equipment at Natural Gas Production Sites in the United States: Liquid Unloadings

David T. Allen; David W. Sullivan; Daniel Zavala-Araiza; Adam P. Pacsi; Matthew Harrison; Kindal Keen; Matthew P. Fraser; A. Daniel Hill; Brian K. Lamb; Robert F. Sawyer; John H. Seinfeld

Methane emissions from liquid unloadings were measured at 107 wells in natural gas production regions throughout the United States. Liquid unloadings clear wells of accumulated liquids to increase production, employing a variety of liquid lifting mechanisms. In this work, wells with and without plunger lifts were sampled. Most wells without plunger lifts unload less than 10 times per year with emissions averaging 21,000-35,000 scf methane (0.4-0.7 Mg) per event (95% confidence limits of 10,000-50,000 scf/event). For wells with plunger lifts, emissions averaged 1000-10,000 scf methane (0.02-0.2 Mg) per event (95% confidence limits of 500-12,000 scf/event). Some wells with plunger lifts are automatically triggered and unload thousands of times per year and these wells account for the majority of the emissions from all wells with liquid unloadings. If the data collected in this work are assumed to be representative of national populations, the data suggest that the central estimate of emissions from unloadings (270 Gg/yr, 95% confidence range of 190-400 Gg) are within a few percent of the emissions estimated in the EPA 2012 Greenhouse Gas National Emission Inventory (released in 2014), with emissions dominated by wells with high frequencies of unloadings.


Applied Optics | 2007

Dual interband cascade laser based trace-gas sensor for environmental monitoring

Gerard Wysocki; Yury A. Bakhirkin; Stephen So; Frank K. Tittel; Cory J. Hill; Rui Q. Yang; Matthew P. Fraser

The development of an interband cascade laser (ICL) based spectroscopic trace-gas sensor for the simultaneous detection of two atmospheric trace gases is reported. The sensor performance was evaluated using two ICLs capable of targeting formaldehyde (H2CO) and ethane (C2H6). Minimum detection limits of 3.5 ppbV for H2CO and 150 pptV for C2H6 was demonstrated with a 1 s integration time. The sensor was deployed for field measurements of H2CO, and laboratory quantification of both formaldehyde and ethane are reported. A cross comparison of the atmospheric concentration data for H2CO with data collected by a collocated commercial H2CO sensor employing Hantzsch reaction based fluorometric detection was performed. These results show excellent agreement between these two different approaches for trace-gas quantification. In addition, laboratory experiments for dual gas quantification show accurate, fast response with no crosstalk between the two gas channels.

Collaboration


Dive into the Matthew P. Fraser's collaboration.

Top Co-Authors

Avatar

David T. Allen

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Pierre Herckes

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Glen R. Cass

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Paul A. Solomon

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge