Matthew P. Rubach
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew P. Rubach.
Current Opinion in Infectious Diseases | 2013
Matthew P. Rubach; Jo E. B. Halliday; Sarah Cleaveland; John A. Crump
Purpose of review Human brucellosis is a neglected, underrecognized infection of widespread geographic distribution. It causes acute febrile illness and a potentially debilitating chronic infection in humans, and livestock infection has substantial socioeconomic impact. This review describes new information regarding the epidemiology of brucellosis in the developing world and advances in diagnosis and treatment. Recent findings The highest recorded incidence of human brucellosis occurs in the Middle East and Central Asia. Fever etiology studies demonstrate brucellosis as a cause of undifferentiated febrile illness in the developing world. Brucellosis is a rare cause of fever among returning travelers, but is more common among travelers returning from the Middle East and North Africa. Sensitive and specific rapid diagnostic tests appropriate for resource-limited settings have been validated. Randomized controlled trials demonstrate that optimal treatment for human brucellosis consists of doxycycline and an aminoglycoside. Decreasing the burden of human brucellosis requires control of animal brucellosis, but evidence to inform the design of control programs in the developing world is needed. Summary Brucellosis causes substantial morbidity in human and animal populations. While improvements in diagnostic options for resource-limited settings and stronger evidence for optimal therapy should enhance identification and treatment of human brucellosis, prevention of human disease through control in animals remains paramount.
PLOS Neglected Tropical Diseases | 2014
Sky Vanderburg; Matthew P. Rubach; Joanna E.B. Halliday; Sarah Cleaveland; Elizabeth A. Reddy; John A. Crump
Background Q fever is a common cause of febrile illness and community-acquired pneumonia in resource-limited settings. Coxiella burnetii, the causative pathogen, is transmitted among varied host species, but the epidemiology of the organism in Africa is poorly understood. We conducted a systematic review of C. burnetii epidemiology in Africa from a “One Health” perspective to synthesize the published data and identify knowledge gaps. Methods/Principal Findings We searched nine databases to identify articles relevant to four key aspects of C. burnetii epidemiology in human and animal populations in Africa: infection prevalence; disease incidence; transmission risk factors; and infection control efforts. We identified 929 unique articles, 100 of which remained after full-text review. Of these, 41 articles describing 51 studies qualified for data extraction. Animal seroprevalence studies revealed infection by C. burnetii (≤13%) among cattle except for studies in Western and Middle Africa (18–55%). Small ruminant seroprevalence ranged from 11–33%. Human seroprevalence was <8% with the exception of studies among children and in Egypt (10–32%). Close contact with camels and rural residence were associated with increased seropositivity among humans. C. burnetii infection has been associated with livestock abortion. In human cohort studies, Q fever accounted for 2–9% of febrile illness hospitalizations and 1–3% of infective endocarditis cases. We found no studies of disease incidence estimates or disease control efforts. Conclusions/Significance C. burnetii infection is detected in humans and in a wide range of animal species across Africa, but seroprevalence varies widely by species and location. Risk factors underlying this variability are poorly understood as is the role of C. burnetii in livestock abortion. Q fever consistently accounts for a notable proportion of undifferentiated human febrile illness and infective endocarditis in cohort studies, but incidence estimates are lacking. C. burnetii presents a real yet underappreciated threat to human and animal health throughout Africa.
Emerging Infectious Diseases | 2011
Matthew P. Rubach; Jeffrey M. Bender; Susan Mottice; Kimberly E. Hanson; Hsin Yi Cindy Weng; Kent Korgenski; Judy A. Daly; Andrew T. Pavia
TOC Summary: The infection disproportionately affected patients >65 years of age.
PLOS ONE | 2012
Matthew P. Rubach; Jackson Mukemba; Salvatore M. Florence; Bernard John; Benjamin T. Crookston; Bert K. Lopansri; Tsin W. Yeo; Kim A. Piera; Stephen C. Alder; J. Brice Weinberg; Nicholas M. Anstey; Donald L. Granger; Esther D. Mwaikambo
Plasma Plasmodium falciparum histidine-rich protein-2 (PfHRP-2) concentrations, a measure of parasite biomass, have been correlated with malaria severity in adults, but not yet in children. We measured plasma PfHRP-2 in Tanzanian children with uncomplicated (n = 61) and cerebral malaria (n = 45; 7 deaths). Median plasma PfHRP-2 concentrations were higher in cerebral malaria (1008 [IQR 342–2572] ng/mL) than in uncomplicated malaria (465 [IQR 36–1426] ng/mL; p = 0.017). In cerebral malaria, natural log plasma PfHRP-2 was associated with coma depth (r = −0.42; p = 0.006) and mortality (OR: 3.0 [95% CI 1.03–8.76]; p = 0.04). In this relatively small cohort study in a mesoendemic transmission area of Africa, plasma PfHRP-2 was associated with pediatric malaria severity and mortality. Further studies among children in areas of Africa with higher malaria transmission and among children with different clinical manifestations of severe malaria will help determine the wider utility of quantitative PfHRP-2 as a measure of parasite biomass and prognosis in sub-Saharan Africa.
The Journal of Infectious Diseases | 2014
Joe Brice Weinberg; Tsin W. Yeo; Jackson Mukemba; Salvatore M. Florence; Alicia D. Volkheimer; Hao Wang; Youwei Chen; Matthew P. Rubach; Donald L. Granger; Esther D. Mwaikambo; Nicholas M. Anstey
BACKGROUND Nitric oxide (NO) bioavailability is impaired in children and adults with severe falciparum malaria (SM). Asymmetric-dimethylarginine (ADMA) limits NO production by inhibiting NO synthase and is increased in adult SM. The role of ADMA in the pathogenesis of childhood SM is unknown. METHODS We studied Tanzanian children ages 4-8 years with malaria. Plasma levels of arginine, arginase, cell-free hemoglobin, ADMA, symmetric-dimethylarginine (SDMA), histidine-rich protein-2, and angiopoietin-2 were measured. RESULTS ADMA was low in children with SM relative to controls. Nevertheless, arginine and arginine:ADMA ratios were very low in SM. SDMA was high in children with SM. With treatment, arginine and the arginine:ADMA ratio normalized, but SDMA did not. Arginine:ADMA ratios, but not arginine, were significantly and inde-pendent-ly inversely associated with lactate and angiopoietin-2. Plasma arginase was not elevated in those with malaria, and plasma free hemoglobin was elevated only in patients with cerebral malaria. CONCLUSIONS In contrast to adults, plasma ADMA is reduced in SM in children, but hypoargininemia is more severe. Arginine bioavailability (reflected by low arginine:ADMA ratios) is therefore comparably low in SM in children as in adults. Therapies to increase NO bioavailability in malaria may be useful as adjunctive treatment of severe malaria in children.
PLOS Pathogens | 2015
Matthew P. Rubach; Jackson Mukemba; Salvatore M. Florence; Bert K. Lopansri; Keith Hyland; Alicia D. Volkheimer; Tsin W. Yeo; Nicholas M. Anstey; J. Brice Weinberg; Esther D. Mwaikambo; Donald L. Granger
Decreased bioavailability of nitric oxide (NO) is a major contributor to the pathophysiology of severe falciparum malaria. Tetrahydrobiopterin (BH4) is an enzyme cofactor required for NO synthesis from L-arginine. We hypothesized that systemic levels of BH4 would be decreased in children with cerebral malaria, contributing to low NO bioavailability. In an observational study in Tanzania, we measured urine levels of biopterin in its various redox states (fully reduced [BH4] and the oxidized metabolites, dihydrobiopterin [BH2] and biopterin [B0]) in children with uncomplicated malaria (UM, n = 55), cerebral malaria (CM, n = 45), non-malaria central nervous system conditions (NMC, n = 48), and in 111 healthy controls (HC). Median urine BH4 concentration in CM (1.10 [IQR:0.55–2.18] μmol/mmol creatinine) was significantly lower compared to each of the other three groups — UM (2.10 [IQR:1.32–3.14];p<0.001), NMC (1.52 [IQR:1.01–2.71];p = 0.002), and HC (1.60 [IQR:1.15–2.23];p = 0.005). Oxidized biopterins were increased, and the BH4:BH2 ratio markedly decreased in CM. In a multivariate logistic regression model, each Log10-unit decrease in urine BH4 was independently associated with a 3.85-fold (95% CI:1.89–7.61) increase in odds of CM (p<0.001). Low systemic BH4 levels and increased oxidized biopterins contribute to the low NO bioavailability observed in CM. Adjunctive therapy to regenerate BH4 may have a role in improving NO bioavailability and microvascular perfusion in severe falciparum malaria.
Scientific Reports | 2016
J. Brice Weinberg; Alicia D. Volkheimer; Matthew P. Rubach; Salvatore M. Florence; Jackson Mukemba; Ayam R. Kalingonji; Charles Langelier; Youwei Chen; Margaret Bush; Tsin W. Yeo; Donald L. Granger; Nicholas M. Anstey; Esther D. Mwaikambo
We earlier established that nitric oxide (NO) is protective against severe malaria and that arginine and NO levels are reduced in malaria patients. We now show that an M2-like blood monocyte phenotype is significantly associated with hypoargininemia, NO insufficiency, and disease severity in Tanzanian children with falciparum malaria. Compared to control children (n = 106), children with moderately severe (n = 77) and severe falciparum malaria (n = 129) had significantly higher mononuclear cell arginase 1 mRNA, protein, and enzyme activity; lower NOS2 mRNA; lower plasma arginine; and higher plasma IL-10, IL-13, and IL-4. In addition, monocyte CD206 and CD163 and plasma soluble CD163 were elevated. Multivariate logistic regression analysis revealed a significant correlation of risk of severe malaria with both plasma IL-10 and soluble CD163 levels. Monocyte M2 skewing likely contributes to NO bioinsufficiency in falciparum malaria in children. Treatments that reverse the M2 polarization may have potential as adjunctive treatment for malaria.
Clinical Infectious Diseases | 2015
Chelsea Nichols; Ligia Maria Cruz Espinoza; Vera von Kalckreuth; Peter Aaby; Muna Ahmed El Tayeb; Mohammad Ali; Abraham Aseffa; Morten Bjerregaard-Andersen; Robert F. Breiman; Leonard Cosmas; John A. Crump; Denise Dekker; Amy Gassama Sow; Nagla Gasmelseed; Julian T. Hertz; Justin Im; Leon Parfait Kabore; Karen H. Keddy; Frank Konings; Sandra Valborg Løfberg; Christian G. Meyer; Joel M. Montgomery; Aissatou Niang; Andriamampionona Njariharinjakamampionona; Beatrice Olack; Gi Deok Pak; Ursula Panzner; Jin Kyung Park; Se Eun Park; Henintsoa Rabezanahary
BACKGROUND The clinical diagnosis of bacterial bloodstream infections (BSIs) in sub-Saharan Africa is routinely confused with malaria due to overlapping symptoms. The Typhoid Surveillance in Africa Program (TSAP) recruited febrile inpatients and outpatients of all ages using identical study procedures and enrollment criteria, thus providing an opportunity to assess disease etiology and pretreatment patterns among children and adults. METHODS Inpatients and outpatients of all ages with tympanic or axillary temperatures of ≥38.0 or ≥37.5°C, respectively, and inpatients only reporting fever within the previous 72 hours were eligible for recruitment. All recruited patients had one blood sample drawn and cultured for microorganisms. Data from 11 TSAP surveillance sites in nine different countries were used in the analysis. Bivariate analysis was used to compare frequencies of pretreatment and BSIs in febrile children (<15 years old) and adults (≥15 years old) in each country. Pooled Cochran Mantel-Haenszel odds ratios (ORs) were calculated for overall trends. RESULTS There was no significant difference in the odds of a culture-proven BSI between children and adults among inpatients or outpatients. Among both inpatients and outpatients, children had significantly higher odds of having a contaminated blood culture compared with adults. Using country-pooled data, child outpatients had 66% higher odds of having Salmonella Typhi in their bloodstream than adults (OR, 1.66; 95% confidence interval [CI], 1.01-2.73). Overall, inpatient children had 59% higher odds of pretreatment with analgesics in comparison to inpatient adults (OR, 1.59; 95% CI, 1.28-1.97). CONCLUSIONS The proportion of patients with culture-proven BSIs in children compared with adults was similar across the TSAP study population; however, outpatient children were more likely to have Salmonella Typhi infections than outpatient adults. This finding points to the importance of including outpatient facilities in surveillance efforts, particularly for the surveillance of typhoid fever. Strategies to reduce contamination among pediatric blood cultures are needed across the continent to prevent the misdiagnosis of BSI cases in children.
American Journal of Tropical Medicine and Hygiene | 2015
Matthew P. Rubach; Venance P. Maro; John A. Bartlett; John A. Crump
We describe the laboratory-confirmed etiologies of illness among participants in a hospital-based febrile illness cohort study in northern Tanzania who retrospectively met Integrated Management of Adolescent and Adult Illness District Clinician Manual (IMAI) criteria for septic shock, severe respiratory distress without shock, and severe pneumonia, and compare these etiologies against commonly used antimicrobials, including IMAI recommendations for emergency antibacterials (ceftriaxone or ampicillin plus gentamicin) and IMAI first-line recommendations for severe pneumonia (ceftriaxone and a macrolide). Among 423 participants hospitalized with febrile illness, there were 25 septic shock, 37 severe respiratory distress without shock, and 109 severe pneumonia cases. Ceftriaxone had the highest potential utility of all antimicrobials assessed, with responsive etiologies in 12 (48%) septic shock, 5 (14%) severe respiratory distress without shock, and 19 (17%) severe pneumonia illnesses. For each syndrome 17-27% of participants had etiologic diagnoses that would be non-responsive to ceftriaxone, but responsive to other available antimicrobial regimens including amphotericin for cryptococcosis and histoplasmosis; anti-tuberculosis therapy for bacteremic disseminated tuberculosis; or tetracycline therapy for rickettsioses and Q fever. We conclude that although empiric ceftriaxone is appropriate in our setting, etiologies not explicitly addressed in IMAI guidance for these syndromes, such as cryptococcosis, histoplasmosis, and tetracycline-responsive bacterial infections, were common.
Philosophical Transactions of the Royal Society B | 2017
Sarah Cleaveland; Joanne Sharp; Bernadette Abela-Ridder; Kathryn J. Allan; Joram Buza; John A. Crump; Alicia Davis; V.J. Del Rio Vilas; W.A. de Glanville; Rudovick R. Kazwala; Tito Kibona; Felix Lankester; Ahmed Lugelo; Blandina T. Mmbaga; Matthew P. Rubach; E.S. Swai; L. Waldman; Daniel T. Haydon; Katie Hampson; Jo E. B. Halliday
Emerging zoonoses with pandemic potential are a stated priority for the global health security agenda, but endemic zoonoses also have a major societal impact in low-resource settings. Although many endemic zoonoses can be treated, timely diagnosis and appropriate clinical management of human cases is often challenging. Preventive ‘One Health’ interventions, e.g. interventions in animal populations that generate human health benefits, may provide a useful approach to overcoming some of these challenges. Effective strategies, such as animal vaccination, already exist for the prevention, control and elimination of many endemic zoonoses, including rabies, and several livestock zoonoses (e.g. brucellosis, leptospirosis, Q fever) that are important causes of human febrile illness and livestock productivity losses in low- and middle-income countries. We make the case that, for these diseases, One Health interventions have the potential to be more effective and generate more equitable benefits for human health and livelihoods, particularly in rural areas, than approaches that rely exclusively on treatment of human cases. We hypothesize that applying One Health interventions to tackle these health challenges will help to build trust, community engagement and cross-sectoral collaboration, which will in turn strengthen the capacity of fragile health systems to respond to the threat of emerging zoonoses and other future health challenges. One Health interventions thus have the potential to align the ongoing needs of disadvantaged communities with the concerns of the broader global community, providing a pragmatic and equitable approach to meeting the global goals for sustainable development and supporting the global health security agenda. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’.