Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew P. Sadgrove is active.

Publication


Featured researches published by Matthew P. Sadgrove.


The Journal of Nuclear Medicine | 2013

Neutron-Activatable Holmium-Containing Mesoporous Silica Nanoparticles as a Potential Radionuclide Therapeutic Agent for Ovarian Cancer

Anthony J. Di Pasqua; Hong Yuan; Younjee Chung; Jin-Ki Kim; James E. Huckle; Chenxi Li; Matthew P. Sadgrove; Thanh Huyen Tran; Michael Jay; Xiuling Lu

Mesoporous silica nanoparticles (MSNs) were explored as a carrier material for the stable isotope 165Ho and, after neutron capture, its subsequent therapeutic radionuclide, 166Ho (half-life, 26.8 h), for use in radionuclide therapy of ovarian cancer metastasis. Methods: 165Ho-MSNs were prepared using 165Ho-acetylacetonate and MCM-41 silica particles, and stability was determined after irradiation in a nuclear reactor (reactor power, 1 MW; thermal neutron flux of approximately 5.5 × 1012 neutrons/cm2·s). SPECT/CT and tissue biodistribution studies were performed after intraperitoneal administration of 166Ho-MSNs to SKOV-3 ovarian tumor–bearing mice. Radiotherapeutic efficacy was studied by using PET/CT with 18F-FDG to determine tumor volume and by monitoring survival. Results: The holmium-MSNs were able to withstand long irradiation times in a nuclear reactor and did not release 166Ho after significant dilution. SPECT/CT images and tissue distribution results revealed that 166Ho-MSNs accumulated predominantly in tumors (32.8% ± 8.1% injected dose/g after 24 h; 81% ± 7.5% injected dose/g after 1 wk) after intraperitoneal administration. PET/CT images showed reduced 18F-FDG uptake in tumors, which correlated with a marked increase in survival after treatment with approximately 4 MBq of 166Ho-MSNs. Conclusion: The retention of holmium in nanoparticles during irradiation and in vivo after intraperitoneal administration as well as their efficacy in extending survival in tumor-bearing mice underscores their potential as a radiotherapeutic agent for ovarian cancer metastasis.


Journal of Pharmaceutical Sciences | 2012

Physicochemical Characterization of a Prodrug of a Radionuclide Decorporation Agent for Oral Delivery

Katsuhiko Sueda; Matthew P. Sadgrove; Jonathan Fitzsimmons; Michael Jay

Intravenously administered calcium and zinc complexes of diethylenetriaminepentaacetic acid (DTPA) are the agents of choice to treat individuals who have been contaminated with radioactive actinides. However, their use in a mass casualty scenario is hampered by the need for trained personnel to receive treatment. Because DTPA is a highly ionized molecule with permeability-limited bioavailability, the penta-ethyl ester prodrug of DTPA is under evaluation as an orally bioavailable radionuclide decorporation agent. In this work, the physicochemical properties of DTPA penta-ethyl ester were characterized to assess its potential for oral delivery. DTPA penta-ethyl ester was determined to be a low-viscosity liquid with Newtonian flow characteristics. Consistent with the measured pK(a) values, which range from 2.93 to 10.87, this prodrug exhibits pH-dependent solubility and lipophilicity properties that are representative of a weak base and favorable for oral absorption. It is miscible in solvents that are nonpolar to moderately polar and is sufficiently stable to avoid premature hydrolysis during gastrointestinal transit. Therapeutic effects were demonstrated in an initial efficacy study wherein oral treatments of the prodrug were given to rats contaminated with ²⁴¹Am, providing preliminary indications of successful oral delivery. The properties of the prodrug indicate that it is conducive to oral delivery and may offer therapeutic benefits over the standard DTPA therapy following radionuclide contamination.


Drug Development Research | 2012

Evaluation of a DTPA Prodrug, C2E5 as an Orally Bioavailable Radionuclide Decorporation Agent

Matthew P. Sadgrove; Marina G.D. Leed; Shraddha Shapariya; Dora Babu Madhura; Michael Jay

Strategy, Management and Health Policy Enabling Technology, Genomics, Proteomics Preclinical Research Preclinical Development Toxicology, Formulation Drug Delivery, Pharmacokinetics Clinical Development Phases I‐III Regulatory, Quality, Manufacturing Postmarketing Phase IV


Journal of Pharmaceutical Sciences | 2014

Orally administered DTPA penta-ethyl ester for the decorporation of inhaled 241Am

Katsuhiko Sueda; Matthew P. Sadgrove; James E. Huckle; Marina G.D. Leed; Waylon Weber; Melanie Doyle-Eisele; Raymond A. Guilmette; Michael Jay

Diethylenetriaminepentaacetic acid (DTPA) is an effective decorporation agent to facilitate the elimination of radionuclides from the body, but its permeability-limited oral bioavailability limits its utility in mass-casualty emergencies. To overcome this limitation, a prodrug strategy using the penta-ethyl ester form of DTPA is under investigation. Pharmacokinetic and biodistribution studies were conducted in rats by orally administering [(14) C]DTPA penta-ethyl ester, and this prodrug and its hydrolysis products were analyzed as a single entity. Compared with a previous reporting of intravenously administered DTPA, the oral administration of this prodrug resulted in a sustained plasma concentration profile with higher plasma exposure and lower clearance. An assessment of the urine composition revealed that the bioactivation was extensive but incomplete, with no detectable levels of the penta- or tetra-ester forms. Tissue distribution at 12 h was limited, with approximately 73% of the administered dose being associated with the gastrointestinal tract. In the efficacy study, rats were exposed to aerosols of (241) Am nitrate before receiving a single oral treatment of the prodrug. The urinary excretion of (241) Am was found to be 19% higher than with the control. Consistent with prior reports of DTPA, the prodrug was most effective when the treatment delays were minimized.


Journal of Pharmaceutical Sciences | 2016

Interspecies Differences in the Metabolism of a Multiester Prodrug by Carboxylesterases

Jing Fu; Erik Pacyniak; Marina G.D. Leed; Matthew P. Sadgrove; Lesley Marson; Michael Jay

The pentaethyl ester prodrug of the chelating agent diethylene triamine pentaacetic acid (DTPA) referred to as C2E5 is being developed as an orally bioavailable radionuclide decorporation agent. The predicted human efficacy obtained in these experimental animals is confounded by interspecies variations of metabolism. Therefore, in the present study, carboxylesterase-mediated metabolism of [(14)C]-C2E5 was compared in the S9 intestinal and hepatic fractions of human, dog, and rat and their respective plasma. Intestinal hydrolysis of C2E5, resulting in the formation of the tetraethyl ester of DTPA (C2E4), was only detected in human and rat. The primary metabolite in human and dog hepatic fractions was C2E4, whereas the predominant species identified in rat hepatic fractions was the triethyl ester (C2E3). Hepatic hydrolysis of C2E5 causes the formation of C2E4 in human, dog, and rat and C2E3 in rat only. Minimal C2E5 hydrolysis was observed in human and dog plasma, whereas in rat plasma C2E5 converted to C2E3 rapidly, followed by slower further metabolism. Both recombinant CES1 and CES2 play roles in C2E5 metabolism. Together, these data suggest that dogs may be the most appropriate species for predicting human C2E5 metabolism, whereas rats might be useful for clarifying the potential toxicity of C2E5 metabolites.


Drug Development Research | 2013

Transdermal prodrug delivery for radionuclide decorporation: Nonaqueous gel formulation development and in vitro and in vivo assessment

Yong Zhang; Matthew P. Sadgrove; Russell J. Mumper; Michael Jay

Preclinical Research


International Journal of Radiation Biology | 2015

Orally administered DTPA di-ethyl ester for decorporation of 241Am in dogs: Assessment of safety and efficacy in an inhalation-contamination model

James E. Huckle; Matthew P. Sadgrove; Erik Pacyniak; Marina G.D. Leed; Waylon Weber; Melanie Doyle-Eisele; Raymond A. Guilmette; Bushra J. Agha; Robert L. Susick; Russell J. Mumper; Michael Jay

Abstract Purpose: Currently two injectable products of diethylenetriaminepentaacetic acid (DTPA) are U.S. Food and Drug Administration (FDA)-approved for decorporation of 241Am; however, an oral product is considered more amenable in a mass casualty situation. The di-ethyl ester of DTPA, named C2E2, is being developed as an oral drug for treatment of internal radionuclide contamination. Materials and methods: Single-dose decorporation efficacy of C2E2 administered 24-h post contamination was determined in beagle dogs using a 241Am nitrate inhalation contamination model. Single and multiple dose toxicity studies in beagle dogs were performed as part of an initial safety assessment program. In addition, the genotoxic potential of C2E2 was evaluated by the in vitro bacterial reverse mutation Ames test, mammalian cell chromosome aberration cytogenetic assay and an in vivo micronucleus test. Results: Oral administration of C2E2 significantly increased 241Am elimination over untreated controls and significantly reduced the retention of 241Am in tissues, especially liver, kidney, lung and bone. Daily dosing of 200 mg/kg/day for 10 days was well tolerated in dogs. C2E2 was found to be neither mutagenic or clastogenic. Conclusions: The di-ethyl ester of DTPA (C2E2) was shown to effectively enhance the elimination of 241Am after oral administration in a dog inhalation-contamination model and was well tolerated in toxicity studies.


Health Physics | 2013

Species-dependent effective concentration of DTPA in plasma for chelation of 241Am.

Katsuhiko Sueda; Matthew P. Sadgrove; Michael Jay; Anthony J. Di Pasqua

Abstract Diethylenetriaminepentaacetic acid (DTPA) is a chelating agent that is used to facilitate the elimination of radionuclides such as americium from contaminated individuals. Its primary site of action is in the blood, where it competes with various biological ligands, including transferrin and albumin, for the binding of radioactive metals. To evaluate the chelation potential of DTPA under these conditions, the competitive binding of 241Am between DTPA and plasma proteins was studied in rat, beagle, and human plasma in vitro. Following incubation of DTPA and 241Am in plasma, the 241Am-bound ligands were fractionated by ultrafiltration and ion-exchange chromatography, and each fraction was assayed for 241Am content by gamma scintillation counting. Dose response curves of DTPA for 241Am binding were established, and these models were used to calculate the 90% maximal effective concentration, or EC90, of DTPA in each plasma system. The EC90 were determined to be 31.4, 15.9, and 10.0 &mgr;M in rat, beagle, and human plasma, respectively. These values correspond to plasma concentrations of DTPA that maximize 241Am chelation while minimizing excess DTPA. Based on the pharmacokinetic profile of DTPA in humans, after a standard 30 &mgr;mol kg−1 intravenous bolus injection, the plasma concentration of DTPA remains above EC90 for approximately 5.6 h. Likewise, the effective duration of DTPA in rat and beagle were determined to be 0.67 and 1.7 h, respectively. These results suggest that species differences must be considered when translating DTPA efficacy data from animals to humans and offer further insights into improving the current DTPA treatment regimen.


Health Physics | 2015

Species-Dependent Chelation of 241Am by DTPA Di-ethyl Ester

James E. Huckle; Matthew P. Sadgrove; Russell J. Mumper; Michael Jay

AbstractDiethylenetriaminepentaacetic acid (DTPA) is an FDA-approved chelating agent for enhancing the elimination of transuranic elements such as americium from the body. Early access to therapy minimizes deposition of these radionuclides in tissues such as the bone. Due to its poor oral bioavailability, DTPA is administered as an IV injection, delaying access. Therefore, a diethyl-ester analog of DTPA, named C2E2, was synthesized as a means to increase oral absorption. As a hexadentate ligand, it was hypothesized that C2E2 was capable of binding americium directly. Therefore, the protonation constants and americium stability constant for C2E2 were determined by potentiometric titration and a solvent extraction method, respectively. C2E2 was shown to bind americium with a log K of 19.6. The concentrations of C2E2, its metabolite C2E1, and DTPA required to achieve effective binding in rat, beagle, and human plasma were studied in vitro. Dose response curves for each ligand were established, and the 50% maximal effective concentrations were determined for each species. As expected, higher concentrations of C2E2 were required to achieve the same degree of binding as DTPA. The results indicated that chelation in beagle plasma is more representative of the human response than rats. Finally, the pharmacokinetics of C2E2 were investigated in beagles, and the data was fit to a two-compartment model with elimination from the central compartment, along with first-order absorption. Based on the in vitro data, a 100 mg kg−1 dose of C2E2 can be expected to have an effective duration of action of 3.8 h in beagles.


Drug Metabolism and Disposition | 2016

Biotransformation Capacity of Carboxylesterase in Skin and Keratinocytes for the Penta-Ethyl Ester Prodrug of DTPA.

Jing Fu; Matthew P. Sadgrove; Lesley Marson; Michael Jay

The penta-ethyl ester prodrug of the chelating agent diethylene triamine pentaacetic acid (DTPA), referred to as C2E5, effectively accelerated clearance of americium after transdermal delivery. Carboxylesterases (CESs) play important roles in facilitating C2E5 hydrolysis. However, whether CESs in human skin hydrolyze C2E5 remains unknown. We evaluated the gene and protein expression of CESs in distinctive human epidermal cell lines: HEKa, HEKn, HaCaT, and A431. The substrates p-nitrophenyl acetate (pNPA) and 4-nitrophenyl valerate (4-NPV) were used to access esterase and CES activity. C2E5 hydrolysis was measured by radiometric high-performance liquid chromatography after incubation of [14C]C2E5 with supernatant fractions after centrifugation at 9000g (S9) prepared from skin cell lines. CES-specific inhibitors were used to access metabolism in human skin S9 fractions with analysis by liquid chromatography–tandem mass spectrometry. We identified the human carboxylesterase 1 and 2 (CES1 and CES2) bands in a Western blot. The gene expression of these enzymes was supported by a real-time polymerase chain reaction (qPCR). pNPA and 4-NPV assays demonstrated esterase and CES activity in all the cell lines that were comparable to human skin S9 fractions. The prodrug C2E5 was hydrolyzed by skin S9 fractions, resulting in a primary metabolite, C2E4. In human skin S9 fractions, inhibition of C2E5 hydrolysis was greatest with a pan-CES inhibitor (benzil). CES1 inhibition (troglitazone) was greater than CES2 (loperamide), suggesting a primary metabolic role for CES1. These results indicate that human keratinocyte cell lines are useful for the evaluation of human cutaneous metabolism and absorption of ester-based prodrugs. However, keratinocytes from skin provide a small contribution to the overall metabolism of C2E5.

Collaboration


Dive into the Matthew P. Sadgrove's collaboration.

Top Co-Authors

Avatar

Michael Jay

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Russell J. Mumper

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

James E. Huckle

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Marina G.D. Leed

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Katsuhiko Sueda

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Erik Pacyniak

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Yong Zhang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Yu Tsai Yang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Fu

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge