Matthew R. Box
AstraZeneca
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew R. Box.
Journal of Medicinal Chemistry | 2014
M. Raymond V. Finlay; Mark J. Anderton; Susan Ashton; Peter Ballard; Paul A. Bethel; Matthew R. Box; Robert Hugh Bradbury; Simon Brown; Sam Butterworth; Andrew Campbell; Christopher G. Chorley; Nicola Colclough; Darren Cross; Gordon S. Currie; Matthew Grist; Lorraine Hassall; George B. Hill; Daniel S. James; Michael James; Paul D. Kemmitt; Teresa Klinowska; Gillian M. Lamont; Scott Lamont; Nathaniel G. Martin; Heather L. McFarland; Martine J. Mellor; Jonathon P. Orme; David Perkins; Paula Perkins; Graham Richmond
Epidermal growth factor receptor (EGFR) inhibitors have been used clinically in the treatment of non-small-cell lung cancer (NSCLC) patients harboring sensitizing (or activating) mutations for a number of years. Despite encouraging clinical efficacy with these agents, in many patients resistance develops leading to disease progression. In most cases, this resistance is in the form of the T790M mutation. In addition, EGFR wild type receptor inhibition inherent with these agents can lead to dose limiting toxicities of rash and diarrhea. We describe herein the evolution of an early, mutant selective lead to the clinical candidate AZD9291, an irreversible inhibitor of both EGFR sensitizing (EGFRm+) and T790M resistance mutations with selectivity over the wild type form of the receptor. Following observations of significant tumor inhibition in preclinical models, the clinical candidate was administered clinically to patients with T790M positive EGFR-TKI resistant NSCLC and early efficacy has been observed, accompanied by an encouraging safety profile.
Clinical Cancer Research | 2016
Peter Ballard; James W.T. Yates; Zhenfan Yang; Dong-Wan Kim; James Chih-Hsin Yang; Mireille Cantarini; Kathryn Pickup; Angela Jordan; Mike J Hickey; Matthew Grist; Matthew R. Box; Peter Johnström; Katarina Varnäs; Jonas Malmquist; Kenneth S. Thress; Pasi A. Jänne; Darren Cross
Purpose: Approximately one-third of patients with non–small cell lung cancer (NSCLC) harboring tumors with EGFR-tyrosine kinase inhibitor (TKI)-sensitizing mutations (EGFRm) experience disease progression during treatment due to brain metastases. Despite anecdotal reports of EGFR-TKIs providing benefit in some patients with EGFRm NSCLC brain metastases, there is a clinical need for novel EGFR-TKIs with improved efficacy against brain lesions. Experimental Design: We performed preclinical assessments of brain penetration and activity of osimertinib (AZD9291), an oral, potent, irreversible EGFR-TKI selective for EGFRm and T790M resistance mutations, and other EGFR-TKIs in various animal models of EGFR-mutant NSCLC brain metastases. We also present case reports of previously treated patients with EGFRm-advanced NSCLC and brain metastases who received osimertinib in the phase I/II AURA study (NCT01802632). Results: Osimertinib demonstrated greater penetration of the mouse blood–brain barrier than gefitinib, rociletinib (CO-1686), or afatinib, and at clinically relevant doses induced sustained tumor regression in an EGFRm PC9 mouse brain metastases model; rociletinib did not achieve tumor regression. Under positron emission tomography micro-dosing conditions, [11C]osimertinib showed markedly greater exposure in the cynomolgus monkey brain than [11C]rociletinib and [11C]gefitinib. Early clinical evidence of osimertinib activity in previously treated patients with EGFRm-advanced NSCLC and brain metastases is also reported. Conclusions: Osimertinib may represent a clinically significant treatment option for patients with EGFRm NSCLC and brain metastases. Further investigation of osimertinib in this patient population is ongoing. Clin Cancer Res; 22(20); 5130–40. ©2016 AACR.
Journal of Medicinal Chemistry | 2013
Mark J. Anderton; Susan Ashton; Paul A. Bethel; Matthew R. Box; Sam Butterworth; Nicola Colclough; Christopher G. Chorley; Claudio Chuaqui; Darren Cross; Les A. Dakin; Judit É. Debreczeni; Cath Eberlein; M. Raymond V. Finlay; George B. Hill; Matthew Grist; Teresa Klinowska; Clare Lane; Scott Martin; Jonathon P. Orme; Peter Smith; Fengjiang Wang; Michael J. Waring
A novel series of small-molecule inhibitors has been developed to target the double mutant form of the epidermal growth factor receptor (EGFR) tyrosine kinase, which is resistant to treatment with gefitinib and erlotinib. Our reported compounds also show selectivity over wild-type EGFR. Guided by molecular modeling, this series was evolved to target a cysteine residue in the ATP binding site via covalent bond formation and demonstrates high levels of activity in cellular models of the double mutant form of EGFR. In addition, these compounds show significant activity against the activating mutations, which gefitinib and erlotinib target and inhibition of which gives rise to their observed clinical efficacy. A glutathione (GSH)-based assay was used to measure thiol reactivity toward the electrophilic functionality of the inhibitor series, enabling both the identification of a suitable reactivity window for their potency and the development of a reactivity quantitative structure-property relationship (QSPR) to support design.
Journal of Medicinal Chemistry | 2017
William Mccoull; Roman D. Abrams; Erica Anderson; Kevin Blades; Peter Barton; Matthew R. Box; Jonathan Burgess; Kate Byth; Qing Cao; Claudio Chuaqui; Rodrigo J. Carbajo; Tony Cheung; Erin Code; Andrew D. Ferguson; Shaun Fillery; Nathan O. Fuller; Eric Gangl; Ning Gao; Matthew Grist; David Hargreaves; Martin R. Howard; Jun Hu; Paul D. Kemmitt; Jennifer E. Nelson; Nichole O’Connell; D. Bryan Prince; Piotr Raubo; Philip Rawlins; Graeme R. Robb; Junjie Shi
Inhibition of the protein-protein interaction between B-cell lymphoma 6 (BCL6) and corepressors has been implicated as a therapeutic target in diffuse large B-cell lymphoma (DLBCL) cancers and profiling of potent and selective BCL6 inhibitors are critical to test this hypothesis. We identified a pyrazolo[1,5-a]pyrimidine series of BCL6 binders from a fragment screen in parallel with a virtual screen. Using structure-based drug design, binding affinity was increased 100000-fold. This involved displacing crystallographic water, forming new ligand-protein interactions and a macrocyclization to favor the bioactive conformation of the ligands. Optimization for slow off-rate constant kinetics was conducted as well as improving selectivity against an off-target kinase, CK2. Potency in a cellular BCL6 assay was further optimized to afford highly selective probe molecules. Only weak antiproliferative effects were observed across a number of DLBCL lines and a multiple myeloma cell line without a clear relationship to BCL6 potency. As a result, we conclude that the BCL6 hypothesis in DLBCL cancer remains unproven.
MedChemComm | 2014
William Mccoull; Edward J. Hennessy; Kevin Blades; Matthew R. Box; Claudio Chuaqui; James E. Dowling; Christopher D. Davies; Andrew D. Ferguson; Frederick W. Goldberg; Nicholas J. Howe; Paul D. Kemmitt; Gillian M. Lamont; Katrina Madden; Claire McWhirter; Jeffrey G. Varnes; Jason Williams; Bin Yang
A novel series of PAK1 inhibitors was discovered from a kinase directed screen. SAR exploration in the selectivity pocket and solvent tail regions was conducted to understand and optimise PAK1 potency and selectivity against targeted kinases. A liganded PAK1 crystal structure was utilised to guide compound design. Permeability and kinase selectivity impacted the translation of enzyme to cellular PAK1 potency. Compound 36 (AZ-PAK-36) demonstrated improved Gini coefficient, good PAK1 cellular potency and has utility as a tool compound for target validation studies.
Organic Letters | 2009
Justin Fairfield Bower; Matthew R. Box; Michal Czyzewski; Andres E. Goeta; Patrick G. Steel
Silenes, generated through thermolysis of acylpolysilanes, add to alpha,beta-unsaturated esters to form cyclobutanes and silylsubstituted cyclopropanes in moderate yields. Upon Si-C bond oxidation the cyclopropanes are converted directly to 1,4-dicarbonyl compounds, thus demonstrating the formal acyl anion chemistry of acyl polysilanes.
Journal of Organic Chemistry | 2014
Paul D. Kemmitt; Kevin Blades; Matthew R. Box; Stephanie Dickinson; Gillian M. Lamont; Katrina Madden; William Mccoull; Jason Williams
A new synthetic route to 3-(heteroaryl) tetrahydropyrazolo[3,4-c]pyridines has been developed that uses the Suzuki-Miyaura cross-coupling of a triflate 6 with (hetero)aryl boronic acids or esters. Using Pd(OAc)2 and XPhos or an XPhos precatalyst, a diverse range of substituents at the C3 position of the tetrahydropyrazolo[3,4-c]pyridine skeleton were prepared. The use of pivaloyloxymethyl and benzyl protection also offers the potential to differentially functionalize the pyrazole and tetrahydropyridine nitrogens.
Chemical Communications | 2014
Michal Czyzewski; Jonathan D. Sellars; Tamaz Guliashvili; Julius Tibbelin; Lisa Johnstone; Justin Fairfield Bower; Matthew R. Box; Robert D. M. Davies; Henrik Ottosson; Patrick G. Steel
The synthesis of silaheterocycles through the first examples of an intramolecular silene Diels-Alder reaction is described.
Cancer Research | 2011
Richard William Arthur Luke; Matthew S. Addie; Matthew R. Box; David Buttar; Claire Crafter; Gordon S. Currie; Sabina Cosulich; Barry R. Davies; Philippa Dudley; Ryan Greenwood; Paul D. Johnson; Hannah Greenwood; Gillian M. Lamont; Clare Lane; Ken Page; Stuart E. Pearson; Linette Ruston
Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL AKT is a key node in the most frequently de-regulated signaling pathway in human cancer and has been shown to mediate resistance to a range of cytotoxic, anti-hormonal and targeted therapies. We decided to explore inhibitors of AKT as potential new anti-cancer therapeutics. Here we disclose for the first time the discovery and structure of AZD5363, an orally bioavailable, potent ATP-competitive inhibitor of AKT. We evaluated a range of chemical starting points arising from our previous collaboration with the Institute of Cancer Research and Astex Therapeutics Ltd. Ultimately AZD5363 was discovered following a long journey that started from a pyrrolopyrimidine series of compounds. Our first challenge was to improve potency and a second challenge was to improve ROCK selectivity. ROCK is an AGC kinase like AKT but is involved in regulation of vascular tone and thus blood pressure. Extensive SAR studies exploring the series revealed that achieving selectivity over ROCK while retaining AKT potency was quite challenging. Eventually we discovered ways which could improve both selectivity and potency. However, these compounds had significant activity against the hERG ion channel which is implicated in the development of Torsades de Pointes and cardiac death. The next phase of work therefore had to focus on reducing hERG activity, while at the same time not adversely impacting either AKT potency or ROCK selectivity. Finally we discovered that introduction of a key substituent group provided a compound that achieved reduced hERG potency and, surprisingly, also achieved a further small improvement in both AKT potency and ROCK selectivity. This compound was AZD5363. A crystal structure of AZD5363 bound to AKT has revealed some of the key interactions that may contribute to its potency. For example, the pyrrolopyrimidine appears to form hydrogen bonds to the hinge region of the kinase. AZD5363 inhibits all known AKT isoforms with a potency of <10 nM and inhibits phosphorylation of the AKT substrate, PRAS40 in BT474c cells with a potency of 0.31 μM. Activity in in vivo pharmacodynamic and xenograft models has also been demonstrated. A synthetic route suitable for scale-up has been developed. In conclusion, AZD5363 is a potent inhibitor of AKT in vitro and in cells. It has good hERG and ROCK selectivity. It has pharmacodynamic and xenograft activity in vivo. AZD5363 has potential in cancer therapy and is currently in phase 1 clinical trials. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 4478. doi:10.1158/1538-7445.AM2011-4478
Chemical Science | 2011
Michal Czyzewski; Justin Fairfield Bower; Matthew R. Box; Henrik Ottosson; Patrick G. Steel