Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew R. Dreher is active.

Publication


Featured researches published by Matthew R. Dreher.


Advanced Drug Delivery Reviews | 2002

Targeted drug delivery by thermally responsive polymers.

Ashutosh Chilkoti; Matthew R. Dreher; Dan E. Meyer; Drazen Raucher

This review article summarizes recent results on the development of macromolecular carriers for thermal targeting of therapeutics to solid tumors. This approach employs thermally responsive polymers in conjunction with targeted heating of the tumor. The two thermally responsive polymers that are discussed in this article, poly(N-isopropylacrylamide-co-acrylamide) (poly(NIPAAm)) and an artificial elastin-like polypeptide (ELP), were designed to exhibit a soluble-insoluble lower critical solution transition in response to increased temperature slightly above 37 degrees C. In vivo fluorescent videomicroscopy and radiolabel distribution studies of ELP delivery to human tumors implanted in nude mice demonstrated that hyperthermic targeting of the thermally responsive ELP for 1 h provides a approximately two-fold increase in tumor localization compared to the same polypeptide without hyperthermia. Similar results were also obtained for poly(NIPAAm) though the extent of accumulation was somewhat lesser than observed for the ELP. The endocytotic uptake of a thermally responsive ELP was also observed to be significantly enhanced by the thermally triggered phase transition of the polypeptide in cell culture for three different tumor cell lines. Preliminary cytotoxicity studies of an ELP-doxorubicin conjugate indicate that the ELP-doxorubicin conjugate has near equivalent cytotoxicity as free doxorubicin in a cell culture assay.


Advanced Drug Delivery Reviews | 2002

Design of thermally responsive, recombinant polypeptide carriers for targeted drug delivery.

Ashutosh Chilkoti; Matthew R. Dreher; Dan E. Meyer

In this article, we review recombinant DNA methods for the design and synthesis of amino acid-based biopolymers, and briefly summarize an approach, recursive directional ligation (RDL), that we have employed to synthesize oligomeric genes for such biopolymers. We then describe our ongoing research in the use of RDL to synthesize recombinant polypeptide carriers for the targeted delivery of radionuclides, chemotherapeutics and biomolecular therapeutics to tumors. The targeted delivery system uses a thermally responsive, elastin-like polypeptide (ELP) as the drug carrier to enhance the localization of ELP-drug conjugates within a solid tumor that is heated by regional hyperthermia. In the context of this drug delivery application, we discuss the design of ELPs and their recombinant synthesis, which enables the molecular weight and the thermal properties of the polypeptide to be precisely controlled. Finally, our results pertaining to the in vivo targeting of tumors with ELPs are briefly summarized.


Journal of Controlled Release | 2003

Evaluation of an elastin-like polypeptide-doxorubicin conjugate for cancer therapy.

Matthew R. Dreher; Drazen Raucher; Narayanan Balu; O. Michael Colvin; Susan M. Ludeman; Ashutosh Chilkoti

Thermally responsive elastin-like polypeptides (ELPs) were synthesized by recombinant DNA techniques and conjugated to doxorubicin through an acid-labile hydrazone bond to enable release of the drug in the acidic environment of lysosomes. The thermal properties, intracellular localization and cytotoxicity of the conjugate were investigated in this study. The conjugation procedure resulted in a mixed population of free ELP and ELP-doxorubicin (ELP-dox) conjugates that exhibit a broader transition than the parent ELP. A simple centrifugation procedure was developed to purify the ELP-dox conjugate from other reactants and resulted in a sharper thermal transition, similar to the parent ELP. The ELP was endocytosed by squamous cell carcinoma cells (FaDu) and trafficked into lysosomes, as observed by the colocalization of the ELP with a lysosome-specific dye through confocal fluorescence microscopy. Interestingly, both the ELP-dox conjugate and free drug exhibited near equivalent in vitro cytotoxicity, although their subcellular localization was significantly different. The free drug was largely concentrated in the nucleus, while the conjugate was dispersed throughout the cytoplasm with limited nuclear accumulation. These differences are significant because they suggest a different mechanism of cytotoxicity for the conjugate as compared with the free drug.


Cancer Research | 2012

Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors.

Ashley Manzoor; Lars H. Lindner; Chelsea D. Landon; Ji-Young Park; Andrew J. Simnick; Matthew R. Dreher; S Das; Gabi Hanna; Won Soon Park; Ashutosh Chilkoti; Gerben A. Koning; Timo L.M. ten Hagen; David Needham; Mark W. Dewhirst

Traditionally, the goal of nanoparticle-based chemotherapy has been to decrease normal tissue toxicity by improving drug specificity to tumors. The enhanced permeability and retention effect can permit passive accumulation into tumor interstitium. However, suboptimal delivery is achieved with most nanoparticles because of heterogeneities of vascular permeability, which limits nanoparticle penetration. Furthermore, slow drug release limits bioavailability. We developed a fast drug-releasing liposome triggered by local heat that has already shown substantial antitumor efficacy and is in human trials. Here, we show that thermally sensitive liposomes (Dox-TSL) release doxorubicin inside the tumor vasculature. Real-time confocal imaging of doxorubicin delivery to murine tumors in window chambers and histologic analysis of flank tumors illustrates that intravascular drug release increases free drug in the interstitial space. This increases both the time that tumor cells are exposed to maximum drug levels and the drug penetration distance, compared with free drug or traditional pegylated liposomes. These improvements in drug bioavailability establish a new paradigm in drug delivery: rapidly triggered drug release in the tumor bloodstream.


Journal of Controlled Release | 2012

Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model.

Ashish Ranjan; Genevieve Jacobs; David L. Woods; Ayele H. Negussie; Ari Partanen; Pavel S. Yarmolenko; C. Gacchina; Karun Sharma; Victor Frenkel; Bradford J. Wood; Matthew R. Dreher

Clinical-grade doxorubicin encapsulated low temperature sensitive liposomes (LTSLs) were combined with a clinical magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) platform to investigate in vivo image-guided drug delivery. Plasma pharmacokinetics were determined in 3 rabbits. Fifteen rabbits with Vx2 tumors within superficial thigh muscle were randomly assigned into three treatment groups: 1) free doxorubicin, 2) LTSL and 3) LTSL + MR-HIFU. For the LTSL + MR-HIFU group, mild hyperthermia (40-41 °C) was applied to the tumors using an MR-HIFU system. Image-guided non-invasive hyperthermia was applied for a total of 30 min, completed within 1h after LTSL infusion. High-pressure liquid chromatography (HPLC) analysis of the harvested tumor and organ/tissue homogenates was performed to determine doxorubicin concentration. Fluorescence microscopy was performed to determine doxorubicin spatial distribution in the tumors. Sonication of Vx2 tumors resulted in accurate (mean = 40.5 ± 0.1 °C) and spatially homogenous (SD = 1.0 °C) temperature control in the target region. LTSL + MR-HIFU resulted in significantly higher tumor doxorubicin concentrations (7.6- and 3.4-fold greater compared to free doxorubicin and LTSL respectively, p<0.05, Newman-Keuls). This improved tumor concentration was achieved despite heating <25% of the tumor volume. Free doxorubicin and LTSL treatments appeared to deliver more drug in the tumor periphery as compared to the tumor core. In contrast, LTSL + MR-HIFU treatment suggested an improved distribution with doxorubicin found in both the tumor periphery and core. Doxorubicin bio-distribution in non-tumor organs/tissues was fairly similar between treatment groups. This technique has potential for clinical translation as an image-guided method to deliver drug to a solid tumor.


Nano Letters | 2012

Triple stimulus-responsive polypeptide nanoparticles that enhance intratumoral spatial distribution

Daniel J. Callahan; Wenge Liu; Xinghai Li; Matthew R. Dreher; Wafa Hassouneh; Minkyu Kim; Piotr E. Marszalek; Ashutosh Chilkoti

To address the limited tumor penetration of nanoparticle drug delivery vehicles, we report the first pH-responsive polypeptide micelle that dissociates at the low extracellular pH of solid tumors. This histidine-rich elastin-like polypeptide block copolymer self-assembles at 37 °C into spherical micelles that are stabilized by Zn(2+) and are disrupted as the pH drops from 7.4 to 6.4. These pH-sensitive micelles demonstrate better in vivo penetration and distribution in tumors than a pH-insensitive control.


Journal of Controlled Release | 2006

Structural optimization of a “smart” doxorubicin–polypeptide conjugate for thermally targeted delivery to solid tumors

Darin Y. Furgeson; Matthew R. Dreher; Ashutosh Chilkoti

A thermoresponsive, genetically engineered, elastin-like polypeptide (ELP) containing a C-terminal cysteine residue was synthesized and purified by inverse transition cycling (ITC) and conjugated to doxorubicin (Dox) molecules through four different pH-sensitive, maleimide-activated, hydrazone linkers. The efficiency of Dox activation, conjugation ratios to ELP and biophysical characterization-hydrodynamic radius (Rh) and the temperature transition kinetics-of the ELP-Dox conjugates and pH-mediated release of Dox were quantified in this study. Conjugation ratios of the maleimide-activated Dox to the thiol group of a unique cysteine in the ELP were close to unity. The Rh of the conjugate increased as the linker length between the ELP backbone and Dox was increased. The linker structure and length had little effect on the Tt of the ELP-Dox conjugates, as all conjugates exhibited Tts that were similar to the native ELP. However, the ELP-Dox conjugates with longer linkers exhibited slower transition kinetics compared to the ELP-Dox conjugates with shorter linkers. The highest release of the ELP-Dox conjugate by cleavage of the hydrazone bond at pH 4 was nearly 80% over 72 h and was exhibited by the conjugate with the shortest linker.


International Journal of Hyperthermia | 2011

Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound

Ayele H. Negussie; Pavel S. Yarmolenko; Ari Partanen; Ashish Ranjan; Genevieve Jacobs; David L. Woods; Henry Bryant; David Thomasson; Mark W. Dewhirst; Bradford J. Wood; Matthew R. Dreher

Purpose: Objectives of this study were to: 1) develop iLTSL, a low temperature sensitive liposome co-loaded with an MRI contrast agent (ProHance® Gd-HP-DO3A) and doxorubicin, 2) characterise doxorubicin and Gd-HP-DO3A release from iLTSL and 3) investigate the ability of magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) to induce and monitor iLTSL content release in phantoms and in vivo. Methods: iLTSL was passively loaded with Gd-HP-DO3A and actively loaded with doxorubicin. Doxorubicin and Gd-HP-DO3A release was quantified by fluorescence and spectroscopic techniques, respectively. Release with MR-HIFU was examined in tissue-mimicking phantoms containing iLTSL and in a VX2 rabbit tumour model. Results: iLTSL demonstrated consistent size and doxorubicin release kinetics after storage at 4°C for 7 days. Release of doxorubicin and Gd-HP-DO3A from iLTSL was minimal at 37°C but fast when heated to 41.3°C. The magnitude of release was not significantly different between doxorubicin and Gd-HP-DO3A over 10 min in HEPES buffer and plasma at 37°, 40° and 41.3°C (p > 0.05). Relaxivity of iLTSL increased significantly (p < 0.0001) from 1.95 ± 0.05 to 4.01 ± 0.1 mMs−1 when heated above the transition temperature. Signal increase corresponded spatially and temporally to MR-HIFU-heated locations in phantoms. Signal increase was also observed in vivo after iLTSL injection and after each 10-min heating (41°C), with greatest increase in the heated tumour region. Conclusion: An MR imageable liposome formulation co-loaded with doxorubicin and an MR contrast agent was developed. Stability, imageability, and MR-HIFU monitoring and control of content release suggest that MR-HIFU combined with iLTSL may enable real-time monitoring and spatial control of content release.


Cancer Research | 2007

Thermal Cycling Enhances the Accumulation of a Temperature-Sensitive Biopolymer in Solid Tumors

Matthew R. Dreher; Wenge Liu; Charles R. Michelich; Mark W. Dewhirst; Ashutosh Chilkoti

The delivery of anticancer therapeutics to solid tumors remains a critical problem in the treatment of cancer. This study reports a new methodology to target a temperature-responsive macromolecular drug carrier, an elastin-like polypeptide (ELP) to solid tumors. Using a dorsal skin fold window chamber model and intravital laser scanning confocal microscopy, we show that the ELP forms micron-sized aggregates that adhere to the tumor vasculature only when tumors are heated to 41.5 degrees C. Upon return to normothermia, the vascular particles dissolve into the plasma, increasing the vascular concentration, which drives more ELPs across the tumor blood vessel and significantly increases its extravascular accumulation. These observations suggested that thermal cycling of tumors would increase the exposure of tumor cells to ELP drug carriers. We investigated this hypothesis in this study by thermally cycling an implanted tumor in nude mice from body temperature to 41.5 degrees C thrice within 1.5 h, and showed the repeated formation of adherent microparticles of ELP in the heated tumor vasculature in each thermal cycle. These results suggest that thermal cycling of tumors can be repeated multiple times to further increase the accumulation of a thermally responsive polymeric drug carrier in solid tumors over a single heat-cool cycle. More broadly, this study shows a new approach--tumor thermal cycling--to exploit stimuli-responsive polymers in vivo to target the tumor vasculature or extravascular compartment with high specificity.


Journal of Controlled Release | 2010

Synthesis and in vitro evaluation of cyclic NGR peptide targeted thermally sensitive liposome

Ayele H. Negussie; Jenna L. Miller; Goutham Reddy; Steven K. Drake; Bradford J. Wood; Matthew R. Dreher

The Asn-Gly-Arg (NGR) motif in both cyclic and linear form has previously been shown to specifically bind to CD13/aminopeptidase N that is selectively overexpressed in tumor vasculature and some tumor cells. However, previous versions of cyclic NGR used a liable disulfide bridge between cysteine residues that may be problematic for liposome targeting due to disulfide bond formation between adjacent peptides on the liposomal surface. In this study, we report the design, synthesis, and characterization of a novel cyclic NGR-containing peptide, cKNGRE, which does not contain a disulfide bridge. cKNGRE was synthesized in good yield and purity and attached to the fluorescent reporter Oregon Green (cKNGRE-OG) and lysolipid-containing temperature sensitive liposomes (LTSLs). The identity of cKNGRE was verified with NMR and mass spectral techniques. In vitro fluorescence microscopy evaluation of cKNGRE-OG demonstrated binding and active uptake by CD13(+) cancer cells and minimal binding to CD13(-) cancer cells. The cKNGRE-OG ligand displayed 3.6-fold greater affinity for CD13(+) cancer cells than a linear NGR-containing peptide. Affinity for CD13(+) cancer cells was similarly improved 10-fold for both the cyclic and linear NGR when presented in a multivalent fashion on the surface of an LTSL. cKNGRE-targeted LTSLs rapidly released (>75% in <4s) doxorubicin at 41.3 degrees C with minimal release at 37 degrees C. These results demonstrate the ability to synthesize a cKNGRE-targeted temperature sensitive liposome that lacks a disulfide bridge and has sufficient binding affinity for biological applications.

Collaboration


Dive into the Matthew R. Dreher's collaboration.

Top Co-Authors

Avatar

Bradford J. Wood

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ayele H. Negussie

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Karun Sharma

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

David L. Woods

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dieter Haemmerich

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

E. Levy

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge