Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew R. Gardner is active.

Publication


Featured researches published by Matthew R. Gardner.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Envelope residue 375 substitutions in simian-human immunodeficiency viruses enhance CD4 binding and replication in rhesus macaques.

Hui Li; Shuyi Wang; Rui Kong; Wenge Ding; Fang Hua Lee; Zahra F. Parker; Eunlim Kim; Gerald H. Learn; Paul Hahn; Ben Policicchio; Egidio Brocca-Cofano; Claire Deleage; Xingpei Hao; Gwo Yu Chuang; Jason Gorman; Matthew R. Gardner; Mark G. Lewis; Theodora Hatziioannou; Sampa Santra; Cristian Apetrei; Ivona Pandrea; S. Munir Alam; Hua-Xin Liao; Xiaoying Shen; Georgia D. Tomaras; Michael Farzan; Elena Chertova; Brandon F. Keele; Jacob D. Estes; Jeffrey D. Lifson

Significance Simian–human immunodeficiency viruses (SHIVs) are an invaluable tool for assessing HIV-1 vaccines, developing therapeutic “cure” strategies, and understanding viral immunopathogenesis. However, only limited success has been achieved in creating SHIVs that incorporate HIV-1 envelopes (Envs) that retain the antigenic features of clinically relevant viruses. Here we focus on a critical residue of the CD4-binding region, Env375, which is under strong positive selection across the broad range of primate lentiviruses. We find that genotypic variation of residue 375 allows for the creation of pathogenic SHIVs that retain the antigenicity, tier 2 neutralization sensitivity, and persistence properties characteristic of primary HIV-1 strains. Taken together, our findings suggest a new paradigm for SHIV design and modeling with important applications to HIV-1 vaccine, cure, and pathogenesis research. Most simian–human immunodeficiency viruses (SHIVs) bearing envelope (Env) glycoproteins from primary HIV-1 strains fail to infect rhesus macaques (RMs). We hypothesized that inefficient Env binding to rhesus CD4 (rhCD4) limits virus entry and replication and could be enhanced by substituting naturally occurring simian immunodeficiency virus Env residues at position 375, which resides at a critical location in the CD4-binding pocket and is under strong positive evolutionary pressure across the broad spectrum of primate lentiviruses. SHIVs containing primary or transmitted/founder HIV-1 subtype A, B, C, or D Envs with genotypic variants at residue 375 were constructed and analyzed in vitro and in vivo. Bulky hydrophobic or basic amino acids substituted for serine-375 enhanced Env affinity for rhCD4, virus entry into cells bearing rhCD4, and virus replication in primary rhCD4 T cells without appreciably affecting antigenicity or antibody-mediated neutralization sensitivity. Twenty-four RMs inoculated with subtype A, B, C, or D SHIVs all became productively infected with different Env375 variants—S, M, Y, H, W, or F—that were differentially selected in different Env backbones. Notably, SHIVs replicated persistently at titers comparable to HIV-1 in humans and elicited autologous neutralizing antibody responses typical of HIV-1. Seven animals succumbed to AIDS. These findings identify Env–rhCD4 binding as a critical determinant for productive SHIV infection in RMs and validate a novel and generalizable strategy for constructing SHIVs with Env glycoproteins of interest, including those that in humans elicit broadly neutralizing antibodies or bind particular Ig germ-line B-cell receptors.


Journal of Virology | 2015

Envelope Glycoprotein Internalization Protects Human and Simian Immunodeficiency Virus-Infected Cells from Antibody-Dependent Cell-Mediated Cytotoxicity

Benjamin von Bredow; Juan F. Arias; Lisa N. Heyer; Matthew R. Gardner; Michael Farzan; Eva G. Rakasz; David T. Evans

ABSTRACT The cytoplasmic tails of human and simian immunodeficiency virus (HIV and SIV, respectively) envelope glycoproteins contain a highly conserved, membrane-proximal endocytosis motif that prevents the accumulation of Env on the surface of infected cells prior to virus assembly. Using an assay designed to measure the killing of virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC), we show that substitutions in this motif increase the susceptibility of HIV-1- and SIV-infected cells to ADCC in a manner that directly correlates with elevated Env levels on the surface of virus-infected cells. In the case of HIV-1, this effect is additive with a deletion in vpu recently shown to enhance the susceptibility of HIV-1-infected cells to ADCC as a result of tetherin-mediated retention of budding virions on the cell surface. These results reveal a previously unappreciated role for the membrane-proximal endocytosis motif of gp41 in protecting HIV-1- and SIV-infected cells from antibody responses by regulating the amount of Env present on the cell surface. IMPORTANCE This study reveals an unappreciated role for the membrane-proximal endocytosis motif of gp41 in protecting HIV-1- and SIV-infected cells from elimination by Env-specific antibodies. Thus, strategies designed to interfere with this mechanism of Env internalization may improve the efficacy of antibody-based vaccines and antiretroviral therapies designed to enhance the immunological control of HIV-1 replication in chronically infected individuals.


Neuron | 2015

Mechanism for Selective Synaptic Wiring of Rod Photoreceptors into the Retinal Circuitry and Its Role in Vision

Yan Cao; Ignacio Sarria; Katherine E. Fehlhaber; Naomi Kamasawa; Cesare Orlandi; Kiely N. James; Jennifer L. Hazen; Matthew R. Gardner; Michael Farzan; Amy Lee; Sheila A. Baker; Kristin K. Baldwin; Alapakkam P. Sampath; Kirill A. Martemyanov

In the retina, rod and cone photoreceptors form distinct connections with different classes of downstream bipolar cells. However, the molecular mechanisms responsible for their selective connectivity are unknown. Here we identify a cell-adhesion protein, ELFN1, to be essential for the formation of synapses between rods and rod ON-bipolar cells in the primary rod pathway. ELFN1 is expressed selectively in rods where it is targeted to the axonal terminals by the synaptic release machinery. At the synapse, ELFN1 binds in trans to mGluR6, the postsynaptic receptor on rod ON-bipolar cells. Elimination of ELFN1 in mice prevents the formation of synaptic contacts involving rods, but not cones, allowing a dissection of the contributions of primary and secondary rod pathways to retinal circuit function and vision. We conclude that ELFN1 is necessary for the selective wiring of rods into the primary rod pathway and is required for high sensitivity of vision.


Journal of Virology | 2012

Enhanced recognition and neutralization of HIV-1 by antibody-derived CCR5-mimetic peptide variants.

Jessica J. Chiang; Matthew R. Gardner; Brian D. Quinlan; Tatyana Dorfman; Hyeryun Choe; Michael Farzan

ABSTRACT A tyrosine-sulfated CCR5-mimetic peptide, CCR5mim1, inhibits HIV-1 infection more efficiently than sulfopeptides based on the CCR5 amino terminus. Here we characterized sulfopeptide chimeras of CCR5mim1 and the heavy-chain CDR3 of the antibody PG16. Two chimeras bound a range of envelope glycoproteins and neutralized HIV-1 more efficiently than CCR5mim1. An immunoadhesin form of one of these, CCR5mim2-Ig, synergized with CD4-Ig to neutralize HIV-1. These sulfopeptides are among the broadest and most potent CCR5-mimetic peptides described to date.


Journal of Virology | 2014

A Double-Mimetic Peptide Efficiently Neutralizes HIV-1 by Bridging the CD4- and Coreceptor-Binding Sites of gp120

Brian D. Quinlan; Vinita R. Joshi; Matthew R. Gardner; Kourosh H. Ebrahimi; Michael Farzan

ABSTRACT The HIV-1 envelope glycoprotein binds cooperatively to its cellular receptor CD4 and a coreceptor, principally CXCR4 or CCR5. We have previously improved a natural amino-acid form of a scorpion toxin-derived CD4-mimetic peptide and in parallel generated sulfopeptide mimetics of the CCR5 amino terminus. Here we show that some fusions of these CCR5- and CD4-mimetic peptides, expressed as immunoadhesins, neutralize HIV-1 more efficiently than CD4-Fc or equimolar mixtures of immunoadhesin forms of each peptide. Specifically, double-mimetic peptides with linkers of 11 amino acids or greater, and with the CCR5-mimetic component preceding the CD4-mimetic component, were more efficient than constructs with shorter linkers or in a reverse orientation. The potency of these constructs derives from (i) their ability to simultaneously and cooperatively bind the CD4- and CCR5-binding sites of a single gp120 monomer of the HIV-1 envelope glycoprotein trimer and (ii) the ability of the CCR5-mimetic component to prevent the CD4-mimetic peptide from promoting infection when cellular CD4 is limiting. Thus, there is a significant advantage to simultaneously targeting both conserved regions of the HIV-1 envelope glycoprotein. IMPORTANCE This report describes a novel class of peptides that potently inhibit HIV-1 entry. These peptides simultaneously target the receptor- and coreceptor-binding sites of the HIV-1 envelope glycoprotein gp120. Peptides of this class overcome key limitations of inhibitors that target only one gp120 binding region and illustrate the utility of binding the sulfotyrosine-binding pockets of gp120.


Journal of Biological Chemistry | 2013

Direct expression and validation of phage-selected peptide variants in mammalian cells

Brian D. Quinlan; Matthew R. Gardner; Vinita R. Joshi; Jessica J. Chiang; Michael Farzan

Background: Phage display technology is commonly used to improve peptide and protein affinities. Results: A system circumventing a key bottleneck in this technology is used to improve a peptide inhibitor of HIV-1 entry. Conclusion: This system enables integration of sensitive and functional assays such as flow cytometry and viral neutralization into an iterative phage display workflow. Significance: This approach expands the power of a critical biotechnology. Phage display is a key technology for the identification and maturation of high affinity peptides, antibodies, and other proteins. However, limitations of bacterial expression restrict the range and sensitivity of assays that can be used to evaluate phage-selected variants. To address this problem, selected genes are typically transferred to mammalian expression vectors, a major rate-limiting step in the iterative improvement of peptides and proteins. Here we describe a system that combines phage display and efficient mammalian expression in a single vector, pDQ1. This system permits immediate expression of phage-selected genes as IgG1-Fc fusions in mammalian cells, facilitating the rapid, sensitive characterization of a large number of library outputs for their biochemical and functional properties. We demonstrate the utility of this system by improving the ability of a CD4-mimetic peptide to bind the HIV-1 envelope glycoprotein and neutralize HIV-1 entry. We further improved the potency of the resulting peptide, CD4mim6, by limiting its ability to induce the CD4-bound conformation of the envelope glycoprotein. Thus, CD4mim6 and its variants can be used to investigate the properties of the HIV-1 envelope glycoprotein, and pDQ1 can accelerate the discovery of new peptides and proteins through phage display.


Journal of Virology | 2016

CD4-induced antibodies promote association of the HIV-1 envelope glycoprotein with CD4-binding site antibodies

Matthew R. Gardner; Christoph H. Fellinger; Neha R. Prasad; Amber S. Zhou; Hema R. Kondur; Vinita R. Joshi; Brian D. Quinlan; Michael Farzan

ABSTRACT The HIV-1 envelope glycoprotein (Env) is a trimer of gp120/gp41 heterodimers that mediates viral entry. Env binds cellular CD4, an association which stabilizes a conformation favorable to its subsequent association with a coreceptor, typically CCR5 or CXCR4. The CD4- and coreceptor-binding sites serve as epitopes for two classes of HIV-1-neutralizing antibodies: CD4-binding site (CD4bs) and CD4-induced (CD4i) antibodies, respectively. Here we observed that, at a fixed total concentration, mixtures of the CD4i antibodies (E51 or 412d) and the CD4bs antibody VRC01 neutralized the HIV-1 isolates 89.6, ADA, SG3, and SA32 more efficiently than either antibody alone. We found that E51, and to a lesser extent 412d and 17b, promoted association of four CD4bs antibodies to the Env trimer but not to monomeric gp120. We further demonstrated that the binding of the sulfotyrosine-binding pocket by CCR5mim2-Ig was sufficient for promoting CD4bs antibody binding to Env. Interestingly, the relationship is not reciprocal: CD4bs antibodies were not as efficient as CD4-Ig at promoting E51 or 412d binding to Env trimer. Consistent with these observations, CD4-Ig, but none of the CD4bs antibodies tested, substantially increased HIV-1 infection of a CD4-negative, CCR5-positive cell line. We conclude that the ability of CD4i antibodies to promote VRC01 association with Env trimers accounts for the increase potency of VRC01 and CD4i antibody mixtures. Our data further suggest that potent CD4bs antibodies avoid inducing Env conformations that bind CD4i antibodies or CCR5. IMPORTANCE Potent HIV-1-neutralizing antibodies can prevent viral transmission and suppress an ongoing infection. Here we show that CD4-induced (CD4i) antibodies, which recognize the conserved coreceptor-binding site of the HIV-1 envelope glycoprotein (Env), can increase the association of Env with potent broadly neutralizing antibodies that recognize the CD4-binding site (CD4bs antibodies). We further show that, unlike soluble forms of CD4, CD4bs antibodies poorly induce envelope glycoprotein conformations that efficiently bind CCR5. This study provides insight into the properties of potent CD4bs antibodies and suggests that, under some conditions, CD4i antibodies can improve their potency. These observations may be helpful to the development of vaccines designed to elicit specific antibody classes.


Current Opinion in Hiv and Aids | 2017

Engineering antibody-like inhibitors to prevent and treat Hiv-1 infection

Matthew R. Gardner; Michael Farzan

PURPOSE OF REVIEW Here we discuss recently developed HIV-1 entry inhibitors that can target multiple epitopes on the HIV-1 envelope glycoprotein (Env), with an emphasis on eCD4-Ig. Some of these inhibitors are more potent and broader than any single antibody characterized to date. We also discuss the use of recombinant adeno-associated virus (rAAV) vectors as a platform for long-term expression of these inhibitors. RECENT FINDINGS Much of the exterior of HIV-1 Env can be targeted by broadly neutralizing antibodies (bNAbs). Recent studies combine the variable regions or Fabs from different bNAbs, often with the receptor-mimetic components, to create broad, potent, and hard-to-escape inhibitors. rAAV vectors can express these inhibitors for years in vivo, highlighting their ability to prevent or treat HIV-1 infection. SUMMARY By targeting multiple epitopes on Env, bispecific and antibody-like inhibitors can be broader and more potent than bNAbs. These inhibitors can provide long-term protection from, and perhaps suppression of, HIV-1 if they are administered by a delivery platform, like rAAV vectors, but only after rAAV limitations are addressed.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0.Purpose of review Here we discuss recently developed HIV-1 entry inhibitors that can target multiple epitopes on the HIV-1 envelope glycoprotein (Env), with an emphasis on eCD4-Ig. Some of these inhibitors are more potent and broader than any single antibody characterized to date. We also discuss the use of recombinant adeno-associated virus (rAAV) vectors as a platform for long-term expression of these inhibitors. Recent findings Much of the exterior of HIV-1 Env can be targeted by broadly neutralizing antibodies (bNAbs). Recent studies combine the variable regions or Fabs from different bNAbs, often with the receptor-mimetic components, to create broad, potent, and hard-to-escape inhibitors. rAAV vectors can express these inhibitors for years in vivo, highlighting their ability to prevent or treat HIV-1 infection. Summary By targeting multiple epitopes on Env, bispecific and antibody-like inhibitors can be broader and more potent than bNAbs. These inhibitors can provide long-term protection from, and perhaps suppression of, HIV-1 if they are administered by a delivery platform, like rAAV vectors, but only after rAAV limitations are addressed.


Molecular Therapy | 2018

Conditional Regulation of Gene Expression by Ligand-Induced Occlusion of a MicroRNA Target Sequence

Huihui Mou; Guocai Zhong; Matthew R. Gardner; Haimin Wang; Yi-Wen Wang; Dechun Cheng; Michael Farzan

RNA switches that modulate gene expression with small molecules have a number of scientific and clinical applications. Here, we describe a novel class of small regulatory on switches based on the ability of a ligand-bound aptamer to promote stem formation between a microRNA target sequence (miR-T) and a complementary competing strand. Two on switch architectures employing this basic concept were evaluated, differing in the location of a tetracycline aptamer and the region of a miR-21 target sequence (miR-21-T) masked by its competing strand. Further optimizations of miR-21-T and its competing strand resulted in tetracycline-regulated on switches that induced luciferase expression by 19-fold in HeLa cells. A similar switch design based on miR-122-T afforded 7-fold regulation when placed in tandem, indicating that this approach can be extended to additional miR-T. Optimized on switches introduced into adeno-associated virus (AAV) vectors afforded 10-fold regulation of two antiviral proteins in AAV-transduced cells. Our data demonstrate that small-molecule-induced occlusion of a miR-T can be used to conditionally regulate gene expression in mammalian cells and suggest that regulatory switches built on this principle can be used to dose expression of an AAV transgene.


PLOS Pathogens | 2017

eCD4-Ig promotes ADCC activity of sera from HIV-1-infected patients

Meredith E. Davis-Gardner; Matthew R. Gardner; Barnett Alfant; Michael Farzan

Antibody-dependent cell-mediated cytotoxity (ADCC) can eliminate HIV-1 infected cells, and may help reduce the reservoir of latent virus in infected patients. Sera of HIV-1 positive individuals include a number of antibodies that recognize epitopes usually occluded on HIV-1 envelope glycoprotein (Env) trimers. We have recently described eCD4-Ig, a potent and exceptionally broad inhibitor of HIV-1 entry that can be used to protect rhesus macaques from multiple high-dose challenges with simian-human immunodeficiency virus AD8 (SHIV-AD8). Here we show that eCD4-Ig bearing an IgG1 Fc domain (eCD4-IgG1) can mediate efficient ADCC activity against HIV-1 isolates with differing tropisms, and that it does so at least 10-fold more efficiently than CD4-Ig, even when more CD4-Ig molecules bound cell surface-expressed Env. An ADCC-inactive IgG2 form of eCD4-Ig (eCD4-IgG2) exposes V3-loop and CD4-induced epitopes on cell-expressed trimers, and renders HIV-1-infected cells susceptible to ADCC mediated by antibodies of these classes. Moreover, eCD4-IgG2, but not IgG2 forms of the broadly neutralizing antibodies VRC01 and 10–1074, enhances the ADCC activities of serum antibodies from patients by 100-fold, and significantly enhanced killing of two latently infected T-cell lines reactivated by vorinostat or TNFα. Thus eCD4-Ig is qualitatively different from CD4-Ig or neutralizing antibodies in its ability to mediate ADCC, and it may be uniquely useful in treating HIV-1 infection or reducing the reservoir of latently infected cells.

Collaboration


Dive into the Matthew R. Gardner's collaboration.

Top Co-Authors

Avatar

Michael Farzan

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vinita R. Joshi

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Barnett Alfant

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amber S. Zhou

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

David T. Evans

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Hema R. Kondur

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge