Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew R. Green is active.

Publication


Featured researches published by Matthew R. Green.


Neuroscience | 2013

FROM THE STRESSED ADOLESCENT TO THE ANXIOUS AND DEPRESSED ADULT: INVESTIGATIONS IN RODENT MODELS

Cheryl M. McCormick; Matthew R. Green

Anxiety and depression are the most prevalent of the psychiatric disorders. The average age of onset of these disorders is in adolescence, and stressful experiences are recognized as an important pathway to such dysfunction. Until recently, however, most animal models of these disorders involved adult males. We provide a brief overview of anxiety and depression and the extent to which adolescent rodents are a valid model for their investigation, and briefly review the main measures of anxiety-like and depressive behaviour in rodents. The focus of the review is investigations in which adolescent rodents were exposed to chronic stressors, describing our research using social instability stress and that of other researchers using various social and non-social stressors. The evidence to date suggests stress in adolescence alters the trajectory of brain development, and particularly that of the hippocampus, increasing anxiety and depressive behaviour in adulthood.


Developmental Psychobiology | 2013

Social instability stress in adolescence increases anxiety and reduces social interactions in adulthood in male long–evans rats

Matthew R. Green; Brittany Barnes; Cheryl M. McCormick

We investigated the effects of social instability stress (daily 1-hr isolation, change of cage partner, postnatal day 30-45) in adolescence in male rats on open field exploration and social behavior in adulthood. Social stressed rats had longer latencies to enter the center of an open field and then took longer to approach an object placed in the center of the field. When another rat was placed in the open field, stressed rats spent less time in social interaction than control rats, particularly when paired with another stressed, rather than a control, rat. The groups did not differ in social approach tests (when a stimulus rat was separated by wire mesh) nor in novel object exploration (when controlling for open field anxiety). The results suggest social stress in adolescence increases open field anxiety while maintaining exploratory behavior, and alters social interactions in adulthood.


Hormones and Behavior | 2013

Deficits in male sexual behavior in adulthood after social instability stress in adolescence in rats

Cheryl M. McCormick; Matthew R. Green; Nicole M. Cameron; Feather Nixon; Marisa J. Levy; Rachel A. Clark

There is increasing evidence that exposure to stressors in adolescence has long-lasting effects on emotional and cognitive behavior, but little is known as to whether reproductive functions are affected. We investigated appetitive and consummatory aspects of sexual behavior in male rats that were exposed to chronic social instability stress (SS, n=24) for 16 days in mid-adolescence compared to control rats (CTL, n=24). Over five sexual behavior test sessions with a receptive female, SS rats made fewer ejaculations (p=0.02) and had longer latencies to ejaculation (p=0.03). When only data from rats that ejaculated in the fifth session were analyzed, SS rats (n=18) had reduced copulatory efficiency (more mounts and intromissions before ejaculation) compared to CTL rats (n=19) (p=0.004), and CTL rats were twice as likely as SS rats to make more than one ejaculation in the fifth session (p=0.05). Further, more CTL (14/24) than SS (5/25) rats ejaculated in four or more sessions (p=0.05). SS rats had lower plasma testosterone concentrations than CTL rats (p=0.05), but did not differ in androgen receptor, estrogen receptor alpha, or Fos immunoreactive cell counts in the medial preoptic area. The groups did not differ in a partner preference test administered between the fourth and fifth sexual behavior session. The results suggest that developmental history contributes to individual differences in reproductive behavior, and that stress exposures in adolescence may be a factor in sexual sluggishness.


General and Comparative Endocrinology | 2016

Sex and stress steroids in adolescence: Gonadal regulation of the hypothalamic–pituitary–adrenal axis in the rat

Matthew R. Green; Cheryl M. McCormick

This review provides an overview of the current understanding of the role of the hypothalamic-pituitary-gonadal (HPG) axis in regulating the hypothalamic-pituitary-adrenal (HPA) axis response to stressors. HPA function is influenced by both organizational (programming) and activational effects of gonadal hormones. Typically, in adult rats, estradiol increases and androgens decrease the HPA response to stressors, thereby contributing to sex differences in HPA function, and sensitivity of the HPA axis to gonadal steroids is in part determined by exposure to these hormones in early development. Although developmental differences in HPA function are well characterized, the extent to which gonadal steroids contribute to age differences in HPA function is not well understood. Deficits in the understanding of the relationships between the HPA and HPG axes are greatest for the adolescent period of development. The critical outstanding questions are, when do gonadal hormones begin to regulate HPA function in adolescence, and what mechanisms precipitate change in sensitivity of the HPA axis to the HPG axis at this stage of life.


Behavioural Brain Research | 2013

Effects of social instability stress in adolescence on long-term, not short-term, spatial memory performance

Matthew R. Green; Cheryl M. McCormick

There is evidence that exposure to stressors in adolescence leads to lasting deficits on hippocampal-dependent tasks, but whether medial prefrontal cortical function is also impaired is unknown. We previously found that rats exposed to social instability stress in adolescence (SS; daily 1h isolation and subsequent change of cage partner between postnatal days 30 and 45) had impaired memory performance on a Spatial Object Location test and in memory for fear conditioning context, tasks that depend on the integrity of the hippocampus. Here we investigated whether impaired performance would be evident after adolescent SS in male rats on a different test of hippocampal function, spatial learning and memory in the Morris water maze (MWM) and on a working memory task for which performance depends on the integrity of the medial prefrontal cortex, the Delayed Alternation task (DAT). During MWM testing, SS rats showed greater improvements in performance across trials within days compared to control (CTL) rats, but showed less retention of learning between days (48 h) compared to CTL rats. Similarly, SS rats had impaired long-term memory in the Spatial Object Location test after a long delay (240 min), but not after shorter delays (15 or 60 min) compared to CTL rats. No group differences were observed on the DAT, which assessed working memory across brief delays (5-90 s). Thus, deficits in memory performance after chronic social stress in adolescence may be limited to long-term memory.


International Journal of Developmental Neuroscience | 2014

Effects of social context on endocrine function and Zif268 expression in response to an acute stressor in adolescent and adult rats

Travis E. Hodges; Matthew R. Green; Jonathan J. Simone; Cheryl M. McCormick

There is a paucity of studies comparing social buffering in adolescents and adults, despite their marked differences in social behavior. We investigated whether greater effects of social buffering on plasma corticosterone concentrations and expression of Zif268 in neural regions after an acute stressor would be found in adolescent than adult rats. Samples were obtained before and after 1 h of isolation stress and after either 1 or 3 h of recovery back in the colony with either a familiar or unfamiliar cage partner. Adolescent and adult rats did not differ in plasma concentrations of corticosterone at any time point. Corticosterone concentrations were higher after 1 h isolation than at baseline (p < 0.001), and rats with a familiar partner during the recovery phase had lower corticosterone concentrations than did rats with an unfamiliar partner (p = 0.02). Zif268 immunoreactive cell counts were higher in the arcuate nucleus in both age groups after isolation (p = 0.007) and in the paraventricular nucleus of adolescents than adults during the recovery phase irrespective of partner familiarity. There was a significant decrease in immunoreactive cell counts after 1 h isolation compared to baseline in the basolateral amygdala, central nucleus of the amygdala, and in the pyramidal layer of the hippocampus (all p < 0.05). An effect of partner familiarity on Zif268 immunoreactive cell counts was found in the granule layer of the dentate gyrus irrespective of age (higher in those with a familiar partner, p = 0.03) and in the medial prefrontal cortex in adolescents (higher with an unfamiliar partner, p = 0.02). Overall, the acute stress and partner familiarity produced a similar pattern of results in adolescents and adults, with both age groups sensitive to the social context.


Neurobiology of Stress | 2017

Translational relevance of rodent models of hypothalamic-pituitary-adrenal function and stressors in adolescence

Cheryl M. McCormick; Matthew R. Green; Jonathan J. Simone

Elevations in glucocorticoids that result from environmental stressors can have programming effects on brain structure and function when the exposure occurs during sensitive periods that involve heightened neural development. In recent years, adolescence has gained increasing attention as another sensitive period of development, a period in which pubertal transitions may increase the vulnerability to stressors. There are similarities in physical and behavioural development between humans and rats, and rats have been used effectively as an animal model of adolescence and the unique plasticity of this period of ontogeny. This review focuses on benefits and challenges of rats as a model for translational research on hypothalamic-pituitary-adrenal (HPA) function and stressors in adolescence, highlighting important parallels and contrasts between adolescent rats and humans, and we review the main stress procedures that are used in investigating HPA stress responses and their consequences in adolescence in rats. We conclude that a greater focus on timing of puberty as a factor in research in adolescent rats may increase the translational relevance of the findings.


Behavioural Brain Research | 2015

Differential effects of CB1 receptor agonism in behavioural tests of unconditioned and conditioned fear in adult male rats.

Jonathan J. Simone; Matthew R. Green; Travis E. Hodges; Cheryl M. McCormick

We investigated the effects of the highly selective CB1 receptor agonist ACEA and the CB1 receptor antagonist/inverse agonist AM251 on two behavioural tests of unconditioned fear, the elevated plus maze (EPM) and open field test (OFT), as well as on the recall and extinction of a conditioned auditory fear. Both ACEA and AM251 increased anxiety-like behaviour in the EPM and OFT. There was no effect of either drug on recall of the conditioned fear, and ACEA enhanced and AM251 impaired fear extinction. Further, though both the low (0.1 mg/kg) and high (0.5 mg/kg) dose of ACEA facilitated fear extinction, the low dose attenuated, and the high dose potentiated, fear induced corticosterone release suggesting independent effects of the drug on fear and stress responses. Although the extent to which cannabinoids are anxiogenic or anxiolytic has been proposed to be dose-dependent, these results indicate that the same dose has differential effects across tasks, likely based in differences in sensitivities of CB1 receptors to the agonist in the neural regions subserving unconditioned and conditioned fear.


Psychoneuroendocrinology | 2016

Glucocorticoid receptor translocation and expression of relevant genes in the hippocampus of adolescent and adult male rats

Matthew R. Green; Rachel E. Nottrodt; Jonathan J. Simone; Cheryl M. McCormick

We investigated whether pre-pubertal (postnatal day [P] 35) and post-pubertal adolescent (P45) and adult (P75) male rats differed in stressor-induced hormonal responses and in glucocorticoid receptor (GR) translocation because it has been proposed that negative feedback is maturing in adolescence and may be a basis for the prolonged activation of the HPA axis in adolescents compared with adults. The three age groups did not differ at baseline in plasma corticosterone or progesterone concentrations, and P35 had lower concentrations of testosterone than did both P45 and P75 rats, which did not differ. After 30min of restraint stress, plasma concentrations of corticosterone and progesterone increased to a greater extent in the adolescents than in the adults. Whereas restraint stress increased concentrations of testosterone in adult males, concentrations decreased in adolescents. In all three age groups, restraint stress reduced GR expression in the cytosol and increased expression in the nucleus within the hippocampus, and the increase in nuclear GR was greater in pre-pubertal adolescents compared with adults. In a separate set of rats we investigated age differences in hippocampal mRNA expression of corticosteroid receptors (MR and GR) and of chaperones (FKBP5, FKBP4, BAG-1), which are known to modulate their activity, at baseline and after restraint stress. Restraint stress decreased the expression of GR and increased the expression of FKBP5 mRNA, and age was not a significant factor. Higher expression of FKBP4 mRNA was found at P35 than at P75. Most research of HPA function in adolescent rats has involved pre-pubertal rats; the present findings indicate that despite their increase in gonadal function, responses to stressors in P45 rats are more like those of pre-pubertal than adult rats. The greater stressor-induced GR translocation in pre-pubertal adolescents parallels their greater release of corticosterone in response to stressors, which may contribute to the enhanced sensitivity of adolescent rats to the effects of chronic stress exposures compared with adults.


Stress | 2018

The effects of ovarian hormones on stressor-induced hormonal responses, glucocorticoid receptor expression and translocation, and genes related to receptor signaling in adult female rats

Matthew R. Green; Marina L. Marcolin; Cheryl M. McCormick

Abstract Estradiol potentiates hypothalamic-pituitary-adrenal activity and delays the return of glucocorticoid secretion to baseline after a stressor exposure in female rats; we investigated whether estradiol effects involve actions on glucocorticoid receptor (GR) translocation and expression of receptor co-chaperones. In Experiment 1 intact females and ovariectomized (OVX) females were treated for four days with vehicle (VEH), 17β-estradiol benzoate (EB), or EB and progesterone (EB + P). Samples were taken from rats in the home cage (baseline) or after 30 min of restraint stress in a plastic restrainer (post-restraint) (n = 10/group). OVX-VEH treatment reduced baseline and post-restraint plasma concentrations of corticosterone versus all other treatments. Western blots indicated that OVX-VEH treated rats had greater hippocampal cytosolic GR expression than other treatments. Stress increased hippocampal nuclear GR expression, but without treatment differences. In Experiment 2 OVX rats were treated daily with VEH, EB, or EB + P (n = 8/group). OVX-VEH rats showed a lower stimulation of corticosterone secretion by restraint stress than other treatments and OVX-EB + P treated rats had lower concentrations than the OVX-EB group, suggesting progesterone mitigated estradiol effects. Quantitative polymerase chain reaction experiments indicated that stress increased Fkbp5 mRNA in the ventral hippocampus, with no effect of stress or treatment on Nr3c1 (GR), Nr3c2 (MR), Fkbp4, Bag1, or Ncoa1 (SRC-1) expression. Thus, the hypothesis is that estradiol effects on negative feedback are mediated by altered expression of receptor co-chaperones or co-modulators in the hippocampus was not supported. Estradiol may blunt feedback by limiting the availability of cytosolic GR protein.

Collaboration


Dive into the Matthew R. Green's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge