Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew R. Hyde is active.

Publication


Featured researches published by Matthew R. Hyde.


Journal of the Operational Research Society | 2013

Hyper-heuristics: a survey of the state of the art

Edmund K. Burke; Michel Gendreau; Matthew R. Hyde; Graham Kendall; Gabriela Ochoa; Ender Özcan; Rong Qu

Hyper-heuristics comprise a set of approaches that are motivated (at least in part) by the goal of automating the design of heuristic methods to solve hard computational search problems. An underlying strategic research challenge is to develop more generally applicable search methodologies. The term hyper-heuristic is relatively new; it was first used in 2000 to describe heuristics to choose heuristics in the context of combinatorial optimisation. However, the idea of automating the design of heuristics is not new; it can be traced back to the 1960s. The definition of hyper-heuristics has been recently extended to refer to a search method or learning mechanism for selecting or generating heuristics to solve computational search problems. Two main hyper-heuristic categories can be considered: heuristic selection and heuristic generation. The distinguishing feature of hyper-heuristics is that they operate on a search space of heuristics (or heuristic components) rather than directly on the search space of solutions to the underlying problem that is being addressed. This paper presents a critical discussion of the scientific literature on hyper-heuristics including their origin and intellectual roots, a detailed account of the main types of approaches, and an overview of some related areas. Current research trends and directions for future research are also discussed.


Archive | 2010

A Classification of Hyper-heuristic Approaches

Edmund K. Burke; Matthew R. Hyde; Graham Kendall; Gabriela Ochoa; Ender Özcan; John R. Woodward

The current state of the art in hyper-heuristic research comprises a set of approaches that share the common goal of automating the design and adaptation of heuristic methods to solve hard computational search problems. The main goal is to produce more generally applicable search methodologies. In this chapter we present an overview of previous categorisations of hyper-heuristics and provide a unified classification and definition, which capture the work that is being undertaken in this field. We distinguish between two main hyper-heuristic categories: heuristic selection and heuristic generation. Some representative examples of each category are discussed in detail. Our goals are to clarify the mainfeatures of existing techniques and to suggest new directions for hyper-heuristic research.


european conference on evolutionary computation in combinatorial optimization | 2012

HyFlex: a benchmark framework for cross-domain heuristic search

Gabriela Ochoa; Matthew R. Hyde; Timothy Curtois; José Antonio Vázquez-Rodríguez; James Walker; Michel Gendreau; Graham Kendall; Andrew J. Parkes; Sanja Petrovic; Edmund K. Burke

This paper presents HyFlex, a software framework for the development of cross-domain search methodologies. The framework features a common software interface for dealing with different combinatorial optimisation problems and provides the algorithm components that are problem specific. In this way, the algorithm designer does not require a detailed knowledge of the problem domains and thus can concentrate his/her efforts on designing adaptive general-purpose optimisation algorithms. Six hard combinatorial problems are fully implemented: maximum satisfiability, one dimensional bin packing, permutation flow shop, personnel scheduling, traveling salesman and vehicle routing. Each domain contains a varied set of instances, including real-world industrial data and an extensive set of state-of-the-art problem specific heuristics and search operators. HyFlex represents a valuable new benchmark of heuristic search generality, with which adaptive cross-domain algorithms are being easily developed and reliably compared.This article serves both as a tutorial and a as survey of the research achievements and publications so far using HyFlex.


genetic and evolutionary computation conference | 2007

Automatic heuristic generation with genetic programming: evolving a jack-of-all-trades or a master of one

Edmund K. Burke; Matthew R. Hyde; Graham Kendall; John R. Woodward

It is possible to argue that online bin packing heuristics should be evaluated by using metrics based on their performance over the set of all bin packing problems, such as the worst case or average case performance. However, this method of assessing a heuristic would only be relevant to a user who employs the heuristic over a set of problems which is actually representative of the set of all possible bin packing problems. On the other hand, a real world user will often only deal with packing problems that are representative of a particular sub-set. Their piece sizes will all belong to a particular distribution. The contribution of this paper is to show that a Genetic Programming system can automate the process of heuristic generation and produce heuristics that are human-competitive over a range of sets of problems, or which excel on a particular sub-set. We also show that the choice of training instances is vital in the area of automatic heuristic generation, due to the trade-off between the performance and generality of the heuristics generated and their applicability to new problems.


IEEE Transactions on Evolutionary Computation | 2010

A Genetic Programming Hyper-Heuristic Approach for Evolving 2-D Strip Packing Heuristics

Edmund K. Burke; Matthew R. Hyde; Graham Kendall; John R. Woodward

We present a genetic programming (GP) system to evolve reusable heuristics for the 2-D strip packing problem. The evolved heuristics are constructive, and decide both which piece to pack next and where to place that piece, given the current partial solution. This paper contributes to a growing research area that represents a paradigm shift in search methodologies. Instead of using evolutionary computation to search a space of solutions, we employ it to search a space of heuristics for the problem. A key motivation is to investigate methods to automate the heuristic design process. It has been stated in the literature that humans are very good at identifying good building blocks for solution methods. However, the task of intelligently searching through all of the potential combinations of these components is better suited to a computer. With such tools at their disposal, heuristic designers are then free to commit more of their time to the creative process of determining good components, while the computer takes on some of the design process by intelligently combining these components. This paper shows that a GP hyper-heuristic can be employed to automatically generate human competitive heuristics in a very-well studied problem domain.


Genetic Programming and Evolvable Machines | 2014

Contrasting meta-learning and hyper-heuristic research: the role of evolutionary algorithms

Gisele L. Pappa; Gabriela Ochoa; Matthew R. Hyde; Alex Alves Freitas; John R. Woodward; Jerry Swan

The fields of machine meta-learning and hyper-heuristic optimisation have developed mostly independently of each other, although evolutionary algorithms (particularly genetic programming) have recently played an important role in the development of both fields. Recent work in both fields shares a common goal, that of automating as much of the algorithm design process as possible. In this paper we first provide a historical perspective on automated algorithm design, and then we discuss similarities and differences between meta-learning in the field of supervised machine learning (classification) and hyper-heuristics in the field of optimisation. This discussion focuses on the dimensions of the problem space, the algorithm space and the performance measure, as well as clarifying important issues related to different levels of automation and generality in both fields. We also discuss important research directions, challenges and foundational issues in meta-learning and hyper-heuristic research. It is important to emphasize that this paper is not a survey, as several surveys on the areas of meta-learning and hyper-heuristics (separately) have been previously published. The main contribution of the paper is to contrast meta-learning and hyper-heuristics methods and concepts, in order to promote awareness and cross-fertilisation of ideas across the (by and large, non-overlapping) different communities of meta-learning and hyper-heuristic researchers. We hope that this cross-fertilisation of ideas can inspire interesting new research in both fields and in the new emerging research area which consists of integrating those fields.


IEEE Transactions on Evolutionary Computation | 2012

Grammatical Evolution of Local Search Heuristics

Edmund K. Burke; Matthew R. Hyde; Graham Kendall

Genetic programming approaches have been employed in the literature to automatically design constructive heuristics for cutting and packing problems. These heuristics obtain results superior to human-created constructive heuristics, but they do not generally obtain results of the same quality as local search heuristics, which start from an initial solution and iteratively improve it. If local search heuristics can be successfully designed through evolution, in addition to a constructive heuristic which initializes the solution, then the quality of results which can be obtained by automatically generated algorithms can be significantly improved. This paper presents a grammatical evolution methodology which automatically designs good quality local search heuristics that maintain their performance on new problem instances.


Evolutionary Computation | 2012

Automating the packing heuristic design process with genetic programming

Edmund K. Burke; Matthew R. Hyde; Graham Kendall; John R. Woodward

The literature shows that one-, two-, and three-dimensional bin packing and knapsack packing are difficult problems in operational research. Many techniques, including exact, heuristic, and metaheuristic approaches, have been investigated to solve these problems and it is often not clear which method to use when presented with a new instance. This paper presents an approach which is motivated by the goal of building computer systems which can design heuristic methods. The overall aim is to explore the possibilities for automating the heuristic design process. We present a genetic programming system to automatically generate a good quality heuristic for each instance. It is not necessary to change the methodology depending on the problem type (one-, two-, or three-dimensional knapsack and bin packing problems), and it therefore has a level of generality unmatched by other systems in the literature. We carry out an extensive suite of experiments and compare with the best human designed heuristics in the literature. Note that our heuristic design methodology uses the same parameters for all the experiments. The contribution of this paper is to present a more general packing methodology than those currently available, and to show that, by using this methodology, it is possible for a computer system to design heuristics which are competitive with the human designed heuristics from the literature. This represents the first packing algorithm in the literature able to claim human competitive results in such a wide variety of packing domains.


congress on evolutionary computation | 2010

Iterated local search vs. hyper-heuristics: Towards general-purpose search algorithms

Edmund K. Burke; Timothy Curtois; Matthew R. Hyde; Graham Kendall; Gabriela Ochoa; Sanja Petrovic; José Antonio Vázquez-Rodríguez; Michel Gendreau

An important challenge within hyper-heuristic research is to design search methodologies that work well, not only across different instances of the same problem, but also across different problem domains. This article conducts an empirical study involving three different domains in combinatorial optimisation: bin packing, permutation flow shop and personnel scheduling. Using a common software interface (HyFlex), the same algorithms (high-level strategies or hyper-heuristics) can be readily run on all of them. The study is intended as a proof of concept of the proposed interface and domain modules, as a benchmark for testing the generalisation abilities of heuristic search algorithms. Several algorithms and variants from the literature were implemented and tested. From them, the implementation of iterated local search produced the best overall performance. Interestingly, this is one of the most conceptually simple competing algorithms, its advantage as a robust algorithm is probably due to two factors: (i) the simple yet powerful exploration/exploitation balance achieved by systematically combining a perturbation followed by local search; and (ii) its parameter-less nature. We believe that the challenge is still open for the design of robust algorithms that can learn and adapt to the available low-level heuristics, and thus select and apply them accordingly.


learning and intelligent optimization | 2011

The cross-domain heuristic search challenge – an international research competition

Edmund K. Burke; Michel Gendreau; Matthew R. Hyde; Graham Kendall; Barry McCollum; Gabriela Ochoa; Andrew J. Parkes; Sanja Petrovic

The first Cross-domain Heuristic Search Challenge (CHeSC 2011) seeks to bring together practitioners from operational research, computer science and artificial intelligence who are interested in developing more generally applicable search methodologies. The challenge is to design a search algorithm that works well, not only across different instances of the same problem, but also across different problem domains. This article overviews the main features of this challenge.

Collaboration


Dive into the Matthew R. Hyde's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Graham Kendall

University of Nottingham Malaysia Campus

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ender Özcan

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Gendreau

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Walker

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge