Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew R. McCann is active.

Publication


Featured researches published by Matthew R. McCann.


Disease Models & Mechanisms | 2012

Tracing notochord-derived cells using a Noto-cre mouse: implications for intervertebral disc development.

Matthew R. McCann; Owen J. Tamplin; Janet Rossant; Cheryle A. Séguin

SUMMARY Back pain related to intervertebral disc degeneration is the most common musculoskeletal problem, with a lifetime prevalence of 82%. The lack of effective treatment for this widespread problem is directly related to our limited understanding of disc development, maintenance and degeneration. The aim of this study was to determine the developmental origins of nucleus pulposus cells within the intervertebral disc using a novel notochord-specific Cre mouse. To trace the fate of notochordal cells within the intervertebral disc, we derived a notochord-specific Cre mouse line by targeting the homeobox gene Noto. Expression of this gene is restricted to the node and the posterior notochord during gastrulation [embryonic day 7.5 (E7.5)-E12.5]. The Noto-cre mice were crossed with a conditional lacZ reporter for visualization of notochord fate in whole-mount embryos. We performed lineage-tracing experiments to examine the contribution of the notochord to spinal development from E12.5 through to skeletally mature mice (9 months). Fate mapping studies demonstrated that, following elongation and formation of the primitive axial skeleton, the notochord gives rise to the nucleus pulposus in fully formed intervertebral discs. Cellular localization of β-galactosidase (encoded by lacZ) and cytokeratin-8 demonstrated that both notochordal cells and chondrocyte-like nucleus pulposus cells are derived from the embryonic notochord. These studies establish conclusively that notochordal cells act as embryonic precursors to all cells found within the nucleus pulposus of the mature intervertebral disc. This suggests that notochordal cells might serve as tissue-specific progenitor cells within the disc and establishes the Noto-cre mouse as a unique tool to interrogate the contribution of notochordal cells to both intervertebral disc development and disc degeneration.


Arthritis & Rheumatism | 2009

Loss of peroxisome proliferator–activated receptor γ in mouse fibroblasts results in increased susceptibility to bleomycin-induced skin fibrosis

Mohit Kapoor; Matthew R. McCann; Shangxi Liu; Kun Huh; Christopher P. Denton; David J. Abraham; Andrew Leask

OBJECTIVE There is increasing evidence that the transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) plays an important role in controlling cell differentiation, and that PPARgamma ligands can modify inflammatory and fibrotic responses. The aim of the present study was to examine the role of PPARgamma in a mouse model of skin scleroderma, in which mice bearing a fibroblast-specific deletion of PPARgamma were used. METHODS Cutaneous sclerosis was induced by subcutaneous injection of bleomycin, while untreated control groups were injected with phosphate buffered saline. Mice bearing a fibroblast-specific deletion of PPARgamma were investigated for changes in dermal thickness, inflammation, collagen content, and the number of alpha-smooth muscle actin-positive cells. The quantity of the collagen-specific amino acid hydroxyproline was also measured. In addition, the effect of PPARgamma deletion on transforming growth factor beta1 (TGFbeta1) signaling in the fibroblasts was investigated. RESULTS Bleomycin treatment induced marked cutaneous thickening and fibrosis in all treated mice. Deletion of PPARgamma resulted in enhanced susceptibility to bleomycin-induced skin fibrosis, as indicated by increases in all measures of skin fibrosis and enhanced sensitivity of fibroblasts to TGFbeta1 in PPAR-deficient mice. CONCLUSION These results indicate that PPARgamma suppresses fibrogenesis. Specific agonists of PPARgamma may therefore alleviate the extent of the development of cutaneous sclerosis.


Journal of Clinical Investigation | 2008

GSK-3β in mouse fibroblasts controls wound healing and fibrosis through an endothelin-1–dependent mechanism

Mohit Kapoor; Shangxi Liu; Xu Shiwen; Kun Huh; Matthew R. McCann; Christopher P. Denton; James R. Woodgett; David J. Abraham; Andrew Leask

Glycogen synthase kinase-3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded by 2 genes, GSK3A and GSK3B. GSK-3 is thought to be involved in tissue repair and fibrogenesis, but its role in these processes is currently unknown. To investigate the function of GSK-3beta in fibroblasts, we generated mice harboring a fibroblast-specific deletion of Gsk3b and evaluated their wound-healing and fibrogenic responses. We have shown that Gsk3b-conditional-KO mice (Gsk3b-CKO mice) exhibited accelerated wound closure, increased fibrogenesis, and excessive scarring compared with control mice. In addition, Gsk3b-CKO mice showed elevated collagen production, decreased cell apoptosis, elevated levels of profibrotic alpha-SMA, and increased myofibroblast formation during wound healing. In cultured Gsk3b-CKO fibroblasts, adhesion, spreading, migration, and contraction were enhanced. Both Gsk3b-CKO mice and fibroblasts showed elevated expression and production of endothelin-1 (ET-1) compared with control mice and cells. Antagonizing ET-1 reversed the phenotype of Gsk3b-CKO fibroblasts and mice. Thus, GSK-3beta appears to control the progression of wound healing and fibrosis by modulating ET-1 levels. These results suggest that targeting the GSK-3beta pathway or ET-1 may be of benefit in controlling tissue repair and fibrogenic responses in vivo.


Arthritis & Rheumatism | 2013

Impaired Intervertebral Disc Development and Premature Disc Degeneration in Mice With Notochord-Specific Deletion of CCN2

Jake Bedore; Wei Sha; Matthew R. McCann; Shangxi Liu; Andrew Leask; Cheryle A. Séguin

OBJECTIVE Currently, our ability to treat intervertebral disc (IVD) degeneration is hampered by an incomplete understanding of disc development and aging. The specific function of matricellular proteins, including CCN2, during these processes remains an enigma. The aim of this study was to determine the tissue-specific localization of CCN proteins and to characterize their role in IVD tissues during embryonic development and age-related degeneration by using a mouse model of notochord-specific CCN2 deletion. METHODS Expression of CCN proteins was assessed in IVD tissues from wild-type mice beginning on embryonic day 15.5 to 17 months of age. Given the enrichment of CCN2 in notochord-derived tissues, we generated notochord-specific CCN2-null mice to assess the impact on the IVD structure and extracellular matrix composition. Using a combination of histologic evaluation and magnetic resonance imaging (MRI), IVD health was assessed. RESULTS Loss of the CCN2 gene in notochord-derived cells disrupted the formation of IVDs in embryonic and newborn mice, resulting in decreased levels of aggrecan and type II collagen and concomitantly increased levels of type I collagen within the nucleus pulposus. CCN2-knockout mice also had altered expression of CCN1 (Cyr61) and CCN3 (Nov). Mirroring its role during early development, notochord-specific CCN2 deletion accelerated age-associated degeneration of IVDs. CONCLUSION Using a notochord-specific gene targeting strategy, this study demonstrates that CCN2 expression by nucleus pulposus cells is essential to the regulation of IVD development and age-associated tissue maintenance. The ability of CCN2 to regulate the composition of the intervertebral disc suggests that it may represent an intriguing clinical target for the treatment of disc degeneration.


Arthritis & Rheumatism | 2015

Repeated exposure to high-frequency low-amplitude vibration induces degeneration of murine intervertebral discs and knee joints.

Matthew R. McCann; Priya Patel; M.A. Pest; A. Ratneswaran; Gurkeet Lalli; Kim L. Beaucage; Garth B. Backler; Meg P. Kamphuis; Ziana Esmail; Jimin Lee; Michael Barbalinardo; John S. Mort; David W. Holdsworth; Frank Beier; S. Jeffrey Dixon; Cheryle A. Séguin

High‐frequency, low‐amplitude whole‐body vibration (WBV) is being used to treat a range of musculoskeletal disorders; however, there is surprisingly limited knowledge regarding its effect(s) on joint tissues. This study was undertaken to examine the effects of repeated exposure to WBV on bone and joint tissues in an in vivo mouse model.


Journal of Developmental Biology | 2016

Notochord Cells in Intervertebral Disc Development and Degeneration

Matthew R. McCann; Cheryle A. Séguin

The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent degenerative disc disease. This review presents an overview of our current understanding of the developmental processes that regulate intervertebral disc formation, with particular emphasis on the role of the notochord and notochord-derived cells in disc homeostasis and how their loss can result in degeneration. We then describe the role of small animal models in understanding the development of the disc and their use to interrogate disc degeneration and associated pathologies. Finally, we highlight essential development pathways that are associated with disc degeneration and/or implicated in the reparative response of the tissue that might serve as targets for future therapeutic approaches.


Arthritis Research & Therapy | 2011

mPGES-1 null mice are resistant to bleomycin-induced skin fibrosis

Matthew R. McCann; Roxana Monemdjou; Parisa Ghassemi-Kakroodi; Hassan Fahmi; Gemma Perez; Shangxi Liu; Xu Shiwen; Sunil K. Parapuram; Fumiaki Kojima; Christopher P. Denton; David J. Abraham; Johanne Martel-Pelletier; Leslie J. Crofford; Andrew Leask; Mohit Kapoor

IntroductionMicrosomal prostaglandin E2 synthase-1 (mPGES-1) is an inducible enzyme that acts downstream of cyclooxygenase (COX) to specifically catalyze the conversion of prostaglandin (PG) H2 to PGE2. mPGES-1 plays a key role in inflammation, pain and arthritis; however, the role of mPGES-1 in fibrogenesis is largely unknown. Herein, we examine the role of mPGES-1 in a mouse model of skin scleroderma using mice deficient in mPGES-1.MethodsWild type (WT) and mPGES-1 null mice were subjected to the bleomycin model of cutaneous skin scleroderma. mPGES-1 expressions in scleroderma fibroblasts and in fibroblasts derived from bleomycin-exposed mice were assessed by Western blot analysis. Degree of fibrosis, dermal thickness, inflammation, collagen content and the number of α-smooth muscle actin (α-SMA)-positive cells were determined by histological analyses. The quantity of the collagen-specific amino acid hydroxyproline was also measured.ResultsCompared to normal skin fibroblasts, mPGES-1 protein expression was elevated in systemic sclerosis (SSc) fibroblasts and in bleomycin-exposed mice. Compared to WT mice, mPGES-1-null mice were resistant to bleomycin-induced inflammation, cutaneous thickening, collagen production and myofibroblast formation.ConclusionsmPGES-1 expression is required for bleomycin-induced skin fibrogenesis. Inhibition of mPGES-1 may be a viable method to alleviate the development of cutaneous sclerosis and is a potential therapeutic target to control the onset of fibrogenesis.


Journal of Cell Communication and Signaling | 2011

Exploiting notochord cells for stem cell-based regeneration of the intervertebral disc

Matthew R. McCann; Corey Bacher; Cheryle A. Séguin

The nucleus pulposus is an avascular and aneural tissue that has significant influence on the homeostasis and overall function of the intervertebral disc. The nucleus pulposus is comprised of a heterogeneous population of cells including large notochord cells and smaller chondrocyte-like cells. Loss of notochord cells has been correlated with the pathogenesis of disc degeneration and consequently, it has been hypothesized that regeneration of the disc could be mediated by notochord cells. Attempts to grow and expand notochord cells in vitro have thus far been limited by cell availability and ineffective culturing methodologies. As a result, co-culturing techniques have been developed in order to exploit notochord-derived signals for the differentiation of proliferative mesenchymal stem cells. A recent study by Korecki et al. has demonstrated that notochord cell conditioned medium has the ability to differentiate mesenchymal stem cells toward a nucleus pulposus-like fate, producing high levels of glycosaminoglycans and type III collagen. These findings suggest that growth factors and other soluble proteins may be able to stimulate endogenous IVD tissue maintenance in vivo. While this study advances our understanding of intervertebral disc cell-cell interactions, limitations remain in our ability to determine the phenotype of terminally differentiated cells within the nucleus pulposus (ie mature notochord cells) and therefore assess the relevance of differentiated mesenchymal stem cells for disc regeneration. In order for the field to progress, elucidation of the notochord phenotype remains of utmost importance.


Arthritis & Rheumatism | 2013

Acute Vibration Induces Transient Expression of Anabolic Genes in the Murine Intervertebral Disc

Matthew R. McCann; Priya Patel; Kim L. Beaucage; Yizhi Xiao; Corey Bacher; Walter L. Siqueira; David W. Holdsworth; S. Jeffrey Dixon; Cheryle A. Séguin

OBJECTIVE Low-amplitude whole-body vibration has been adopted for the treatment of back pain and spinal disorders. However, there is limited knowledge of the impact of vibration on the intervertebral disc (IVD). This study was undertaken to examine the effects of acute vibration on anabolic and catabolic pathways in the IVD and to characterize the dependence of these changes on time and frequency. METHODS Custom-designed platforms were developed to apply acute vibration to ex vivo and in vivo mouse models. Spinal segments (ex vivo) or mice (in vivo) were subjected to vibration (for 30 minutes at 15-90 Hz with peak acceleration at 0.3g), and IVDs were examined at specific time points after vibration. Gene expression was quantified using real-time polymerase chain reaction, and protein levels were examined by quantitative mass spectrometry and immunofluorescence. RESULTS In the ex vivo model, acute vibration at 15 Hz induced expression of anabolic genes (aggrecan, biglycan, decorin, type I collagen, and Sox9) and suppressed expression of Mmp13, with the most pronounced changes detected 6 hours following vibration. These beneficial effects were frequency dependent and were no longer evident between 45 and 90 Hz. In vivo, the effects on anabolic gene expression were even more robust and were accompanied by decreased expression of Adamts4, Adamts5, and Mmp3. Moreover, significant increases in the protein levels of aggrecan, biglycan, decorin, and type I collagen were detected in vivo. CONCLUSION These findings demonstrate dramatic anabolic effects of acute vibration on IVD tissue, responses that are dependent on frequency. The similarity of the in vivo and ex vivo responses indicates that at least some effects of vibration are tissue autonomous.


PLOS ONE | 2015

Proteomic Signature of the Murine Intervertebral Disc

Matthew R. McCann; Priya Patel; Agya Frimpong; Yizhi Xiao; Walter L. Siqueira; Cheryle A. Séguin

Low back pain is the most common musculoskeletal problem and the single most common cause of disability, often attributed to degeneration of the intervertebral disc. Lack of effective treatment is directly related to our limited understanding of the pathways responsible for maintaining disc health. While transcriptional analysis has permitted initial insights into the biology of the intervertebral disc, complete proteomic characterization is required. We therefore employed liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) protein/peptide separation and mass spectrometric analyses to characterize the protein content of intervertebral discs from skeletally mature wild-type mice. A total of 1360 proteins were identified and categorized using PANTHER. Identified proteins were primarily intracellular/plasma membrane (35%), organelle (30%), macromolecular complex (10%), extracellular region (9%). Molecular function categorization resulted in three distinct categories: catalytic activity (33%), binding (molecule interactions) (29%), and structural activity (13%). To validate our list, we confirmed the presence of 14 of 20 previously identified IVD-associated markers, including matrix proteins, transcriptional regulators, and secreted proteins. Immunohistochemical analysis confirmed distinct localization patterns of select protein with the intervertebral disc. Characterization of the protein composition of healthy intervertebral disc tissue is an important first step in identifying cellular processes and pathways disrupted during aging or disease progression.

Collaboration


Dive into the Matthew R. McCann's collaboration.

Top Co-Authors

Avatar

Cheryle A. Séguin

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Andrew Leask

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

David W. Holdsworth

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Shangxi Liu

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Mohit Kapoor

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Priya Patel

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Ratneswaran

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Frank Beier

University of Western Ontario

View shared research outputs
Researchain Logo
Decentralizing Knowledge