Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew R. Parsek is active.

Publication


Featured researches published by Matthew R. Parsek.


Nature | 2001

Gene expression in Pseudomonas aeruginosa biofilms

Marvin Whiteley; M. Gita Bangera; Roger E. Bumgarner; Matthew R. Parsek; Gail M. Teitzel; Stephen Lory; E. P. Greenberg

Bacteria often adopt a sessile biofilm lifestyle that is resistant to antimicrobial treatment. Opportunistic pathogenic bacteria like Pseudomonas aeruginosa can develop persistent infections. To gain insights into the differences between free-living P. aeruginosa cells and those in biofilms, and into the mechanisms underlying the resistance of biofilms to antibiotics, we used DNA microarrays. Here we show that, despite the striking differences in lifestyles, only about 1% of genes showed differential expression in the two growth modes; about 0.5% of genes were activated and about 0.5% were repressed in biofilms. Some of the regulated genes are known to affect antibiotic sensitivity of free-living P. aeruginosa. Exposure of biofilms to high levels of the antibiotic tobramycin caused differential expression of 20 genes. We propose that this response is critical for the development of biofilm resistance to tobramycin. Our results show that gene expression in biofilm cells is similar to that in free-living cells but there are a small number of significant differences. Our identification of biofilm-regulated genes points to mechanisms of biofilm resistance to antibiotics.


Nature Reviews Microbiology | 2010

Bacterial competition: surviving and thriving in the microbial jungle

Michael E. Hibbing; Clay Fuqua; Matthew R. Parsek; S. Brook Peterson

Most natural environments harbour a stunningly diverse collection of microbial species. In these communities, bacteria compete with their neighbours for space and resources. Laboratory experiments with pure and mixed cultures have revealed many active mechanisms by which bacteria can impair or kill other microorganisms. In addition, a growing body of theoretical and experimental population studies indicates that the interactions within and between bacterial species can have a profound impact on the outcome of competition in nature. The next challenge is to integrate the findings of these laboratory and theoretical studies and to evaluate the predictions that they generate in more natural settings.


Nature | 2002

A component of innate immunity prevents bacterial biofilm development.

Pradeep K. Singh; Matthew R. Parsek; E. Peter Greenberg; Michael J. Welsh

Antimicrobial factors form one arm of the innate immune system, which protects mucosal surfaces from bacterial infection. These factors can rapidly kill bacteria deposited on mucosal surfaces and prevent acute invasive infections. In many chronic infections, however, bacteria live in biofilms, which are distinct, matrix-encased communities specialized for surface persistence. The transition from a free-living, independent existence to a biofilm lifestyle can be devastating, because biofilms notoriously resist killing by host defence mechanisms and antibiotics. We hypothesized that the innate immune system possesses specific activity to protect against biofilm infections. Here we show that lactoferrin, a ubiquitous and abundant constituent of human external secretions, blocks biofilm development by the opportunistic pathogen Pseudomonas aeruginosa. This occurs at lactoferrin concentrations below those that kill or prevent growth. By chelating iron, lactoferrin stimulates twitching, a specialized form of surface motility, causing the bacteria to wander across the surface instead of forming cell clusters and biofilms. These findings reveal a specific anti-biofilm defence mechanism acting at a critical juncture in biofilm development, the time bacteria stop roaming as individuals and aggregate into durable communities.


Microbiology | 2002

Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound

Morten Hentzer; Kathrin Riedel; Thomas Bovbjerg Rasmussen; Arne Heydorn; Jens Bo Andersen; Matthew R. Parsek; Scott A. Rice; Leo Eberl; Søren Molin; Niels Høiby; Staffan Kjelleberg; Michael Givskov

Novel molecular tools have been constructed which allow for in situ detection of N-acyl homoserine lactone (AHL)-mediated quorum sensing in Pseudomonas aeruginosa biofilms. The reporter responds to AHL activation of LasR by expression of an unstable version of the green-fluorescent protein (Gfp). Gfp-based reporter technology has been applied for non-destructive, single-cell-level detection of quorum sensing in laboratory-based P. aeruginosa biofilms. It is reported that a synthetic halogenated furanone compound, which is a derivative of the secondary metabolites produced by the Australian macroalga Delisea pulchra, is capable of interfering with AHL-mediated quorum sensing in P. aeruginosa. It is demonstrated that the furanone compound specifically represses expression of a PlasB-gfp reporter fusion without affecting growth or protein synthesis. In addition, it reduces the production of important virulence factors, indicating a general effect on target genes of the las quorum sensing circuit. The furanone was applied to P. aeruginosa biofilms established in biofilm flow chambers. The Gfp-based analysis reveals that the compound penetrates microcolonies and blocks cell signalling and quorum sensing in most biofilm cells. The compound did not affect initial attachment to the abiotic substratum. It does, however, affect the architecture of the biofilm and enhances the process of bacterial detachment, leading to a loss of bacterial biomass from the substratum.


Developmental Cell | 2002

Pseudomonas aeruginosa Anaerobic Respiration in Biofilms: Relationships to Cystic Fibrosis Pathogenesis

Sang Sun Yoon; Robert F. Hennigan; George M. Hilliard; Urs A. Ochsner; Kislay Parvatiyar; Moneesha C. Kamani; Holly L. Allen; Teresa R. DeKievit; Paul R. Gardner; Ute Schwab; John J. Rowe; Barbara H. Iglewski; Timothy R. McDermott; Ronald P. Mason; Daniel J. Wozniak; Robert E. W. Hancock; Matthew R. Parsek; Terry L. Noah; Richard C. Boucher; Daniel J. Hassett

Recent data indicate that cystic fibrosis (CF) airway mucus is anaerobic. This suggests that Pseudomonas aeruginosa infection in CF reflects biofilm formation and persistence in an anaerobic environment. P. aeruginosa formed robust anaerobic biofilms, the viability of which requires rhl quorum sensing and nitric oxide (NO) reductase to modulate or prevent accumulation of toxic NO, a byproduct of anaerobic respiration. Proteomic analyses identified an outer membrane protein, OprF, that was upregulated approximately 40-fold under anaerobic versus aerobic conditions. Further, OprF exists in CF mucus, and CF patients raise antisera to OprF. An oprF mutant formed poor anaerobic biofilms, due, in part, to defects in anaerobic respiration. Thus, future investigations of CF pathogenesis and therapy should include a better understanding of anaerobic metabolism and biofilm development by P. aeruginosa.


Journal of Bacteriology | 2001

Alginate Overproduction Affects Pseudomonas aeruginosa Biofilm Structure and Function

Morten Hentzer; Gail M. Teitzel; Grant J. Balzer; Arne Heydorn; Søren Molin; Michael Givskov; Matthew R. Parsek

During the course of chronic cystic fibrosis (CF) infections, Pseudomonas aeruginosa undergoes a conversion to a mucoid phenotype, which is characterized by overproduction of the exopolysaccharide alginate. Chronic P. aeruginosa infections involve surface-attached, highly antibiotic-resistant communities of microorganisms organized in biofilms. Although biofilm formation and the conversion to mucoidy are both important aspects of CF pathogenesis, the relationship between them is at the present unclear. In this study, we report that the overproduction of alginate affects biofilm development on an abiotic surface. Biofilms formed by an alginate-overproducing strain exhibit a highly structured architecture and are significantly more resistant to the antibiotic tobramycin than a biofilm formed by an isogenic nonmucoid strain. These results suggest that an important consequence of the conversion to mucoidy is an altered biofilm architecture that shows increasing resistance to antimicrobial treatments.


Applied and Environmental Microbiology | 2003

Heavy Metal Resistance of Biofilm and Planktonic Pseudomonas aeruginosa

Gail M. Teitzel; Matthew R. Parsek

ABSTRACT A study was undertaken to examine the effects of the heavy metals copper, lead, and zinc on biofilm and planktonic Pseudomonas aeruginosa. A rotating-disk biofilm reactor was used to generate biofilm and free-swimming cultures to test their relative levels of resistance to heavy metals. It was determined that biofilms were anywhere from 2 to 600 times more resistant to heavy metal stress than free-swimming cells. When planktonic cells at different stages of growth were examined, it was found that logarithmically growing cells were more resistant to copper and lead stress than stationary-phase cells. However, biofilms were observed to be more resistant to heavy metals than either stationary-phase or logarithmically growing planktonic cells. Microscopy was used to evaluate the effect of copper stress on a mature P. aeruginosa biofilm. The exterior of the biofilm was preferentially killed after exposure to elevated concentrations of copper, and the majority of living cells were near the substratum. A potential explanation for this is that the extracellular polymeric substances that encase a biofilm may be responsible for protecting cells from heavy metal stress by binding the heavy metals and retarding their diffusion within the biofilm.


PLOS Pathogens | 2009

Assembly and development of the Pseudomonas aeruginosa biofilm matrix

Luyan Ma; Matthew Conover; Haiping Lu; Matthew R. Parsek; Kenneth W. Bayles; Daniel J. Wozniak

Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide) at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell–cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA) are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications.


Molecular Microbiology | 2006

The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional

Joshua D. Shrout; David L. Chopp; Collin L. Just; Morten Hentzer; Michael Givskov; Matthew R. Parsek

The role of quorum sensing in Pseudomonas aeruginosa biofilm formation is unclear. Some researchers have shown that quorum sensing is important for biofilm development, while others have indicated it has little or no role. In this study, the contribution of quorum sensing to biofilm development was found to depend upon the nutritional environment. Depending upon the carbon source, quorum‐sensing mutant strains (lasIrhlI and lasRrhlR) either exhibited a pronounced defect early in biofilm formation or formed biofilms identical to the wild‐type strain. Quorum sensing was then shown to exert its nutritionally conditional control of biofilm development through regulation of swarming motility. Examination of pilA and fliM mutant strains further supported the role of swarming motility in biofilm formation. These data led to a model proposing that the prevailing nutritional conditions dictate the contributions of quorum sensing and swarming motility at a key juncture early in biofilm development.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms.

Daniel J. Wozniak; Timna J. O. Wyckoff; Melissa Starkey; Rebecca Keyser; Parastoo Azadi; George A. O'Toole; Matthew R. Parsek

The bacterium Pseudomonas aeruginosa causes chronic respiratory infections in cystic fibrosis (CF) patients. Such infections are extremely difficult to control because the bacteria exhibit a biofilm-mode of growth, rendering P. aeruginosa resistant to antibiotics and phagocytic cells. During the course of infection, P. aeruginosa usually undergoes a phenotypic switch to a mucoid colony, which is characterized by the overproduction of the exopolysaccharide alginate. Alginate overproduction has been implicated in protecting P. aeruginosa from the harsh environment present in the CF lung, as well as facilitating its persistence as a biofilm by providing an extracellular matrix that promotes adherence. Because of its association with biofilms in CF patients, it has been assumed that alginate is also the primary exopolysaccharide expressed in biofilms of environmental nonmucoid P. aeruginosa. In this study, we examined the chemical nature of the biofilm matrix produced by wild-type and isogenic alginate biosynthetic mutants of P. aeruginosa. The results clearly indicate that alginate biosynthetic genes are not expressed and that alginate is not required during the formation of nonmucoid biofilms in two P. aeruginosa strains, PAO1 and PA14, that have traditionally been used to study biofilms. Because nonmucoid P. aeruginosa strains are the predominant environmental phenotype and are also involved in the initial colonization in CF patients, these studies have implications in understanding the early events of the infectious process in the CF airway.

Collaboration


Dive into the Matthew R. Parsek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. M. Chakrabarty

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boo Shan Tseng

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge