Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew R. Pratt is active.

Publication


Featured researches published by Matthew R. Pratt.


Chemical Society Reviews | 2005

Synthetic glycopeptides and glycoproteins as tools for biology

Matthew R. Pratt; Carolyn R. Bertozzi

Investigations into the roles of protein glycosylation have revealed functions such as modulating protein structure and localization, cell-cell recognition, and signaling in multicellular systems. However, detailed studies of these events are hampered by the heterogeneous nature of biosynthetic glycoproteins that typically exist in numerous glycoforms. Research into protein glycosylation, therefore, has benefited from homogeneous, structurally-defined glycoproteins obtained by chemical synthesis. This tutorial review focuses on recent applications of homogeneous synthetic glycopeptides and glycoproteins for studies of structure and function. In addition, the future of synthetic glycopeptides and glycoproteins as therapeutics is discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Chemical reporters for fluorescent detection and identification of O-GlcNAc-modified proteins reveal glycosylation of the ubiquitin ligase NEDD4-1

Balyn W. Zaro; Yu-Ying Yang; Howard C. Hang; Matthew R. Pratt

The dynamic modification of nuclear and cytoplasmic proteins by the monosaccharide N-acetyl-glucosamine (GlcNAc) continues to emerge as an important regulator of many biological processes. Herein we describe the development of an alkynyl-modified GlcNAc analog (GlcNAlk) as a new chemical reporter of O-GlcNAc modification in living cells. This strategy is based on metabolic incorporation of reactive functionality into the GlcNAc biosynthetic pathway. When combined with the Cu(I)-catalyzed [3 + 2] azide-alkyne cycloaddition, this chemical reporter allowed for the robust in-gel fluorescent visualization of O-GlcNAc and affinity enrichment and identification of O-GlcNAc-modified proteins. Using in-gel fluorescence detection, we characterized the metabolic fates of GlcNAlk and the previously reported azido analog, GlcNAz. We confirmed previous results that GlcNAz can be metabolically interconverted to GalNAz, whereas GlcNAlk does not, thereby yielding a more specific metabolic reporter of O-GlcNAc modification. We also used GlcNAlk, in combination with a biotin affinity tag, to identify 374 proteins, 279 of which were not previously reported, and we subsequently confirmed the enrichment of three previously uncharacterized proteins. Finally we confirmed the O-GlcNAc modification of the ubiquitin ligase NEDD4-1, the first reported glycosylation of this protein.


ACS Chemical Biology | 2009

Structure-activity analysis of semisynthetic nucleosomes: mechanistic insights into the stimulation of Dot1L by ubiquitylated histone H2B.

Robert K. McGinty; Maja Köhn; Champak Chatterjee; Kyle P. Chiang; Matthew R. Pratt; Tom W. Muir

Post-translational modification of histones plays an integral role in regulation of genomic expression through modulation of chromatin structure and function. Chemical preparations of histones bearing these modifications allows for comprehensive in vitro mechanistic investigation into their action to deconvolute observations from genome-wide studies in vivo. Previously, we reported the semisynthesis of ubiquitylated histone H2B (uH2B) using two orthogonal expressed protein ligation reactions. Semisynthetic uH2B, when incorporated into nucleosomes, directly stimulates methylation of histone H3 lysine 79 (K79) by the methyltransferase, disruptor of telomeric silencing-like (Dot1L). Although recruitment of Dot1L to the nucleosomal surface by uH2B could be excluded, comprehensive mechanistic analysis was precluded by systematic limitations in the ability to generate uH2B in large scale. Here we report a highly optimized synthesis of ubiquitylated H2B bearing a G76A point mutation u(G76A)H2B, yielding tens of milligrams of ubiquitylated protein. u(G76A)H2B is indistinguishable from the native uH2B by Dot1L, allowing for detailed studies of the resultant trans-histone crosstalk. Kinetic and structure-activity relationship analyses using u(G76A)H2B suggest a noncanonical role for ubiquitin in the enhancement of the chemical step of H3K79 methylation. Furthermore, titration of the level of uH2B within the nucleosome revealed a 1:1 stoichiometry of Dot1L activation.


Nature Structural & Molecular Biology | 2004

Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis

Joseph D. Mougous; Christopher J. Petzold; Ryan H. Senaratne; Dong H. Lee; David L. Akey; Fiona L. Lin; Sarah E. Munchel; Matthew R. Pratt; Lee W. Riley; Julie A. Leary; James M. Berger; Carolyn R. Bertozzi

Sulfolipid-1 (SL-1) is an abundant sulfated glycolipid and potential virulence factor found in Mycobacterium tuberculosis. SL-1 consists of a trehalose-2-sulfate (T2S) disaccharide elaborated with four lipids. We identified and characterized a conserved mycobacterial sulfotransferase, Stf0, which generates the T2S moiety of SL-1. Biochemical studies demonstrated that the enzyme requires unmodified trehalose as substrate and is sensitive to small structural perturbations of the disaccharide. Disruption of stf0 in Mycobacterium smegmatis and M. tuberculosis resulted in the loss of T2S and SL-1 formation, respectively. The structure of Stf0 at a resolution of 2.6 Å reveals the molecular basis of trehalose recognition and a unique dimer configuration that encloses the substrate into a bipartite active site. These data provide strong evidence that Stf0 carries out the first committed step in the biosynthesis of SL-1 and establish a system for probing the role of SL-1 in M. tuberculosis infection.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Small-molecule-mediated rescue of protein function by an inducible proteolytic shunt

Matthew R. Pratt; Edmund C. Schwartz; Tom W. Muir

Controlling protein function through posttranslational manipulations has emerged as an attractive complementary technology to existing genetic systems. Often these methods involve developing pharmacological agents to probe protein function without the need to generate a unique compound for each protein family. One common strategy uses small molecules that act as chemical inducers of dimerization by mediating the interaction of two proteins. Herein we report the use of a chemical inducer of dimerization for the development of a posttranslational technology for the manipulation of protein function. This system, split ubiquitin for the rescue of function (SURF), places the complementation of genetically split ubiquitin under the control of rapamycin-induced dimerization of FK506-binding protein and FKBP12-rapamycin-binding protein. Before complementation a “degron” dooms a protein of interest for destruction by the proteasome. Addition of rapamycin results in a proteolytic shunt away from degradation by inducing ubiquitin complementation and cleavage of the protein of interest from the degron. Importantly, the native protein is rescued. We characterized this system with firefly luciferase and went on to apply it to members of three important classes of proteins: proteases (caspase-3), kinases (v-Src), and transcription factors (Smad3). This general strategy should allow for inducible rescue of a variety of proteins in such a way that their native structure and function are maintained.


PLOS ONE | 2009

Anthrax Lethal Toxin Induced Lysosomal Membrane Permeabilization and Cytosolic Cathepsin Release Is Nlrp1b/Nalp1b-Dependent

Matthew R. Pratt; Yanan Yang; Sara Bassilian; Julian P. Whitelegge; Joseph A. Loo; Tom W. Muir; Kenneth A. Bradley

NOD-like receptors (NLRs) are a group of cytoplasmic molecules that recognize microbial invasion or ‘danger signals’. Activation of NLRs can induce rapid caspase-1 dependent cell death termed pyroptosis, or a caspase-1 independent cell death termed pyronecrosis. Bacillus anthracis lethal toxin (LT), is recognized by a subset of alleles of the NLR protein Nlrp1b, resulting in pyroptotic cell death of macrophages and dendritic cells. Here we show that LT induces lysosomal membrane permeabilization (LMP). The presentation of LMP requires expression of an LT-responsive allele of Nlrp1b, and is blocked by proteasome inhibitors and heat shock, both of which prevent LT-mediated pyroptosis. Further the lysosomal protease cathepsin B is released into the cell cytosol and cathepsin inhibitors block LT-mediated cell death. These data reveal a role for lysosomal membrane permeabilization in the cellular response to bacterial pathogens and demonstrate a shared requirement for cytosolic relocalization of cathepsins in pyroptosis and pyronecrosis.


Journal of the American Chemical Society | 2014

Changes in metabolic chemical reporter structure yield a selective probe of O-GlcNAc modification.

Kelly N. Chuh; Balyn W. Zaro; Friedrich Piller; Véronique Piller; Matthew R. Pratt

Metabolic chemical reporters (MCRs) of glycosylation are analogues of monosaccharides that contain bioorthogonal functionalities and enable the direct visualization and identification of glycoproteins from living cells. Each MCR was initially thought to report on specific types of glycosylation. We and others have demonstrated that several MCRs are metabolically transformed and enter multiple glycosylation pathways. Therefore, the development of selective MCRs remains a key unmet goal. We demonstrate here that 6-azido-6-deoxy-N-acetyl-glucosamine (6AzGlcNAc) is a specific MCR for O-GlcNAcylated proteins. Biochemical analysis and comparative proteomics with 6AzGlcNAc, N-azidoacetyl-glucosamine (GlcNAz), and N-azidoacetyl-galactosamine (GalNAz) revealed that 6AzGlcNAc exclusively labels intracellular proteins, while GlcNAz and GalNAz are incorporated into a combination of intracellular and extracellular/lumenal glycoproteins. Notably, 6AzGlcNAc cannot be biosynthetically transformed into the corresponding UDP sugar-donor by the canonical salvage-pathway that requires phosphorylation at the 6-hydroxyl. In vitro experiments showed that 6AzGlcNAc can bypass this roadblock through direct phosphorylation of its 1-hydroxyl by the enzyme phosphoacetylglucosamine mutase (AGM1). Taken together, 6AzGlcNAc enables the specific analysis of O-GlcNAcylated proteins, and these results suggest that specific MCRs for other types of glycosylation can be developed. Additionally, our data demonstrate that cells are equipped with a somewhat unappreciated metabolic flexibility with important implications for the biosynthesis of natural and unnatural carbohydrates.


Journal of the American Chemical Society | 2012

Semisynthetic, Site-Specific Ubiquitin Modification of α-Synuclein Reveals Differential Effects on Aggregation

Franziska Meier; Tharindumala Abeywardana; Abhinav Dhall; Nicholas P. Marotta; Jobin Varkey; Ralf Langen; Champak Chatterjee; Matthew R. Pratt

The process of neurodegeneration in Parkinsons Disease is intimately associated with the aggregation of the protein α-synuclein into toxic oligomers and fibrils. Interestingly, many of these protein aggregates are found to be post-translationally modified by ubiquitin at several different lysine residues. However, the inability to generate homogeneously ubiquitin modified α-synuclein at each site has prevented the understanding of the specific biochemical consequences. We have used protein semisynthesis to generate nine site-specifically ubiquitin modified α-synuclein derivatives and have demonstrated that different ubiquitination sites have differential effects on α-synuclein aggregation.


Chemistry & Biology | 2008

A Full-Length Group 1 Bacterial Sigma Factor Adopts a Compact Structure Incompatible with DNA Binding

Edmund C. Schwartz; Alexander Shekhtman; Kaushik Dutta; Matthew R. Pratt; David Cowburn; Seth A. Darst; Tom W. Muir

The sigma factors are the key regulators of bacterial transcription initiation. Through direct read-out of promoter DNA sequence, they recruit the core RNA polymerase to sites of initiation, thereby dictating the RNA polymerase promoter-specificity. The group 1 sigma factors, which direct the vast majority of transcription initiation during log phase growth and are essential for viability, are autoregulated by an N-terminal sequence known as sigma1.1. We report the solution structure of Thermotoga maritima sigmaA sigma1.1. We additionally demonstrate by using chemical crosslinking strategies that sigma1.1 is in close proximity to the promoter recognition domains of sigmaA. We therefore propose that sigma1.1 autoinhibits promoter DNA binding of free sigmaA by stabilizing a compact organization of the sigma factor domains that is unable to bind DNA.


Journal of the American Chemical Society | 2013

An Alkyne–Aspirin Chemical Reporter for the Detection of Aspirin-Dependent Protein Modification in Living Cells

Leslie A. Bateman; Balyn W. Zaro; Stephanie M. Miller; Matthew R. Pratt

Aspirin (acetylsalicylic acid) is widely used for the acute treatment of inflammation and the management of cardiovascular disease. More recently, it has also been shown to reduce the risk of a variety of cancers. The anti-inflammatory properties of aspirin in pain-relief, cardio-protection, and chemoprevention are well-known to result from the covalent inhibition of cyclooxygenase enzymes through nonenzymatic acetylation of key serine residues. However, any additional molecular mechanisms that may contribute to the beneficial effects of aspirin remain poorly defined. Interestingly, studies over the past 50 years using radiolabeled aspirin demonstrated that other proteins are acetylated by aspirin and enrichment with antiacetyl-lysine antibodies identified 33 potential targets of aspirin-dependent acetylation. Herein we describe the development of an alkyne-modified aspirin analogue (AspAlk) as a chemical reporters of aspirin-dependent acetylation in living cells. When combined with the Cu(I)-catalyzed [3 + 2] azide-alkyne cycloaddition, this chemical reporter allowed for the robust in-gel fluorescent detection of acetylation and the subsequent enrichment and identification of 120 proteins, 112 of which have not been previously reported to be acetylated by aspirin in cellular or in vivo contexts. Finally, AspAlk was shown to modify the core histone proteins, implicating aspirin as a potential chemical-regulator of transcription.

Collaboration


Dive into the Matthew R. Pratt's collaboration.

Top Co-Authors

Avatar

Balyn W. Zaro

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Kelly N. Chuh

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tharindumala Abeywardana

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna R. Batt

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas P. Marotta

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Cesar A. De Leon

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Leslie A. Bateman

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge