Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew R. Reese is active.

Publication


Featured researches published by Matthew R. Reese.


ACS Medicinal Chemistry Letters | 2012

Discovery of Brain-Penetrant, Irreversible Kynurenine Aminotransferase II Inhibitors for Schizophrenia.

Amy B. Dounay; Marie Anderson; Bruce M. Bechle; Brian M. Campbell; Michelle Marie Claffey; Artem G. Evdokimov; Edelweiss Evrard; Kari R. Fonseca; Xinmin Gan; Somraj Ghosh; Matthew Merrill Hayward; Weldon Horner; Ji-Young Kim; Laura A. McAllister; Jayvardhan Pandit; Vanessa Paradis; Vinod D. Parikh; Matthew R. Reese; Suobao Rong; Michelle A. Salafia; Katherine Schuyten; Christine A. Strick; Jamison B. Tuttle; James Valentine; Hong Wang; Laura E. Zawadzke; Patrick Robert Verhoest

Kynurenine aminotransferase (KAT) II has been identified as a potential new target for the treatment of cognitive impairment associated with schizophrenia and other psychiatric disorders. Following a high-throughput screen, cyclic hydroxamic acid PF-04859989 was identified as a potent and selective inhibitor of human and rat KAT II. An X-ray crystal structure and (13)C NMR studies of PF-04859989 bound to KAT II have demonstrated that this compound forms a covalent adduct with the enzyme cofactor, pyridoxal phosphate (PLP), in the active site. In vivo pharmacokinetic and efficacy studies in rat show that PF-04859989 is a brain-penetrant, irreversible inhibitor and is capable of reducing brain kynurenic acid by 50% at a dose of 10 mg/kg (sc). Preliminary structure-activity relationship investigations have been completed and have identified the positions on this scaffold best suited to modification for further optimization of this novel series of KAT II inhibitors.


Bioorganic & Medicinal Chemistry Letters | 2010

C-Aryl glycoside inhibitors of SGLT2: Exploration of sugar modifications including C-5 spirocyclization

Ralph P. Robinson; Vincent Mascitti; Carine M. Boustany-Kari; Christopher L. Carr; Patrick M. Foley; Emi Kimoto; Michael T. Leininger; André Lowe; Michelle K. Klenotic; James I. MacDonald; Robert John Maguire; Victoria M. Masterson; Tristan S. Maurer; Zhuang Miao; Jigna D. Patel; Cathy Préville; Matthew R. Reese; Li She; Claire M. Steppan; Benjamin A. Thuma; Tong Zhu

Modifications to the sugar portion of C-aryl glycoside sodium glucose transporter 2 (SGLT2) inhibitors were explored, including systematic deletion and modification of each of the glycoside hydroxyl groups. Based on results showing activity to be quite tolerant of structural change at the C-5 position, a series of novel C-5 spiro analogues was prepared. Some of these analogues exhibit low nanomolar potency versus SGLT2 and promote urinary glucose excretion (UGE) in rats. However, due to sub-optimal pharmacokinetic parameters (in particular half-life), predicted human doses did not meet criteria for further advancement.


Journal of Medicinal Chemistry | 2014

Discovery and preclinical characterization of 1-methyl-3-(4-methylpyridin-3-yl)-6-(pyridin-2-ylmethoxy)-1H-pyrazolo-[3,4-b]pyrazine (PF470): a highly potent, selective, and efficacious metabotropic glutamate receptor 5 (mGluR5) negative allosteric modulator.

Lei Zhang; Gayatri Balan; Gabriela Barreiro; Brian P. Boscoe; Lois K. Chenard; Julie Cianfrogna; Michelle Marie Claffey; Laigao Chen; Karen J. Coffman; Susan E. Drozda; Joshua R. Dunetz; Kari R. Fonseca; Paul Galatsis; Sarah Grimwood; John T. Lazzaro; Jessica Y. Mancuso; Emily L. Miller; Matthew R. Reese; Bruce N. Rogers; Isao Sakurada; Marc B. Skaddan; Deborah L. Smith; Antonia F. Stepan; Patrick Trapa; Jamison B. Tuttle; Patrick Robert Verhoest; Daniel P. Walker; Ann S. Wright; Margaret M. Zaleska; Kenneth Zasadny

A novel series of pyrazolopyrazines is herein disclosed as mGluR5 negative allosteric modulators (NAMs). Starting from a high-throughput screen (HTS) hit (1), a systematic structure-activity relationship (SAR) study was conducted with a specific focus on balancing pharmacological potency with physicochemical and pharmacokinetic (PK) properties. This effort led to the discovery of 1-methyl-3-(4-methylpyridin-3-yl)-6-(pyridin-2-ylmethoxy)-1H-pyrazolo[3,4-b]pyrazine (PF470, 14) as a highly potent, selective, and orally bioavailable mGluR5 NAM. Compound 14 demonstrated robust efficacy in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-rendered Parkinsonian nonhuman primate model of l-DOPA-induced dyskinesia (PD-LID). However, the progression of 14 to the clinic was terminated because of a potentially mechanism-mediated finding consistent with a delayed-type immune-mediated type IV hypersensitivity in a 90-day NHP regulatory toxicology study.


Organic Letters | 2012

Synthesis of α,α-Difluoroethyl Aryl and Heteroaryl Ethers

Eddie Yang; Matthew R. Reese; John Michael Humphrey

Fluorine plays a critical role in modern medicinal chemistry due to its unique properties, and new methods for its incorporation into target molecules are of high interest. An efficient new method for the preparation of aryl-α,α-difluoroethyl ethers (4) via addition of aryl and heteroaryl alcohols (1) to commercially available 2-bromo-1,1-difluoroethene (2) and subsequent hydrogenolysis is presented. This procedure is an attractive alternative to existing methods that employ harshly reactive fluorinating systems such as xenon difluoride and hydrogen fluoride.


Bioorganic & Medicinal Chemistry Letters | 2015

Discovery of a novel Kv7 channel opener as a treatment for epilepsy.

Jennifer Elizabeth Davoren; Michelle Marie Claffey; Sheri L. Snow; Matthew R. Reese; Gaurav Arora; Christopher Ryan Butler; Brian P. Boscoe; Lois K. Chenard; Shari L. DeNinno; Susan E. Drozda; Allen J. Duplantier; Ludivine Moine; Bruce N. Rogers; Suobao Rong; Katherine Schuyten; Ann S. Wright; Lei Zhang; Kevin A. Serpa; Mark L. Weber; Polina Stolyar; Tammy Whisman; Karen Baker; Karen Tse; Alan J. Clark; Haojing Rong; Robert J. Mather; John A. Lowe

Facilitating activation, or delaying inactivation, of the native Kv7 channel reduces neuronal excitability, which may be beneficial in controlling spontaneous electrical activity during epileptic seizures. In an effort to identify a compound with such properties, the structure-activity relationship (SAR) and in vitro ADME for a series of heterocyclic Kv7.2-7.5 channel openers was explored. PF-05020182 (2) demonstrated suitable properties for further testing in vivo where it dose-dependently decreased the number of animals exhibiting full tonic extension convulsions in response to corneal stimulation in the maximal electroshock (MES) assay. In addition, PF-05020182 (2) significantly inhibited convulsions in the MES assay at doses tested, consistent with in vitro activity measure. The physiochemical properties, in vitro and in vivo activities of PF-05020182 (2) support further development as an adjunctive treatment of refractory epilepsy.


Organic Letters | 2017

Ru/Ni Dual Catalytic Desulfinative Photoredox Csp2–Csp3 Cross-Coupling of Alkyl Sulfinate Salts and Aryl Halides

Thomas Knauber; Ramalakshmi Y. Chandrasekaran; Joseph W. Tucker; Jinshan Michael Chen; Matthew R. Reese; Danica A. Rankic; Neal W. Sach; Christopher John Helal

A mild Ru/Ni dual catalytic desulfinative photoredox Csp2-Csp3 cross-coupling reaction of alkyl sulfinate salts with aryl halides has been developed. The optimized catalyst system, consisting of Ru(bpy)3Cl2, Ni(COD)2, and DBU, smoothly mediates the coupling of a diverse set of secondary and primary nonactivated alkyl sulfinate salts with a broad range of electron-deficient aryl bromides, electron-rich aryl iodides, and heteroaryl bromides under irradiation with blue light. The procedure is ideal for late-stage introduction of alkyl groups on pharmaceutical intermediates, and the Csp2-Csp3 cross-coupling reaction allowed the rapid synthesis of caseine kinase 1δ inhibitor analogues via a parallel medicinal chemistry effort.


Journal of Medicinal Chemistry | 2015

2-Aryl-3-methyloctahydrophenanthrene-2,3,7-triols as Potent Dissociated Glucocorticoid Receptor Agonists

Yves A. Chantigny; John C. Murray; Edward F. Kleinman; Ralph P. Robinson; Michael A. Plotkin; Matthew R. Reese; Leonard Buckbinder; Patricia A. McNiff; Michele L. Millham; Jean Schaefer; Yuriy A. Abramov; Jon Bordner

A significant improvement in agonist activity of the previously described 2-aryloctahydrophenanthrene-2,3,7-triol series of dissociated glucocorticoid receptor agonists (DAGRs) was achieved by modifying the substitution at C3 from (S)-3-hydroxy to (R)-3-hydroxy-3-methyl. The IC50 of the prototype 13 in the efficacy assay measuring repression of IL-1 induced MMP-13 expression was 3.5 nM, exhibiting 87% of the maximal effect of dexamethasone (DEX). It displayed a dissociated profile by exhibiting 42% of the maximal effect of DEX in a mouse mammary tumor virus (MMTV) luciferase reporter transactivation assay. Compound 13 and analogues containing heterocyclic replacements for the C2 phenyl and modified B rings showed high repression of TNFα production in human whole blood, with IC50 values (43-167 nM) approaching the level of DEX (21 nM). On the basis of X-ray structures and force field calculations, the overall potency of this series was attributed to a favorable conformation of the C2α phenyl, induced by the neighboring C3α methyl.


Magnetic Resonance in Chemistry | 2017

Utilizing on‐ and off‐line monitoring tools to follow a kinetic resolution step during flow synthesis

Kathleen A. Farley; Usa Reilly; Dennis P. Anderson; Brian P. Boscoe; Mark W. Bundesmann; David A. Foley; Manjinder S. Lall; Chao Li; Matthew R. Reese; Jiangli Yan

In situ reaction monitoring tools offer the ability to track the progress of a synthetic reaction in real time to facilitate reaction optimization and provide kinetic/mechanistic insight. Herein, we report the utilization of flow NMR, flow IR, and other off‐line spectroscopy tools to monitor the progress of a flow chemistry reaction. The on‐line and off‐line tools were selected to facilitate the stereoselective kinetic resolution of a key racemic monomer, which lacked a chromophore, making conventional reaction monitoring difficult. Copyright


Organic Letters | 2018

Sulfonamide Synthesis via Calcium Triflimide Activation of Sulfonyl Fluorides

Paramita Mukherjee; Cristian P. Woroch; Leah Cleary; Mark Rusznak; Ryan W. Franzese; Matthew R. Reese; Joseph W. Tucker; John Michael Humphrey; Sarah M. Etuk; Sabrina C. Kwan; Christopher W. am Ende; Nicholas D. Ball

A method using calcium triflimide [Ca(NTf2)2] as a Lewis acid to activate sulfonyl fluorides toward nucleophilic addition with amines is described. The reaction converts a wide array of sterically and electronically diverse sulfonyl fluorides and amines into the corresponding sulfonamides in good yield.


Journal of Medicinal Chemistry | 2017

Discovery and Characterization of (R)-6-Neopentyl-2-(pyridin-2-ylmethoxy)-6,7-dihydropyrimido[2,1-c][1,4]oxazin-4(9H)-one (PF-06462894), an Alkyne-Lacking Metabotropic Glutamate Receptor 5 Negative Allosteric Modulator Profiled in both Rat and Nonhuman Primates

Antonia F. Stepan; Michelle Marie Claffey; Matthew R. Reese; Gayatri Balan; Gabriela Barreiro; Jason Barricklow; Michael John Bohanon; Brian P. Boscoe; Gregg D. Cappon; Lois K. Chenard; Julie Cianfrogna; Laigao Chen; Karen J. Coffman; Susan E. Drozda; Joshua R. Dunetz; Somraj Ghosh; Xinjun Hou; Christopher Houle; Kapil Karki; John T. Lazzaro; Jessica Y. Mancuso; John M. Marcek; Emily L. Miller; Mark A. Moen; Steven V. O’Neil; Isao Sakurada; Marc B. Skaddan; Vinod D. Parikh; Deborah L. Smith; Patrick Trapa

We previously observed a cutaneous type IV immune response in nonhuman primates (NHP) with the mGlu5 negative allosteric modulator (NAM) 7. To determine if this adverse event was chemotype- or mechanism-based, we evaluated a distinct series of mGlu5 NAMs. Increasing the sp3 character of high-throughput screening hit 40 afforded a novel morpholinopyrimidone mGlu5 NAM series. Its prototype, (R)-6-neopentyl-2-(pyridin-2-ylmethoxy)-6,7-dihydropyrimido[2,1-c][1,4]oxazin-4(9H)-one (PF-06462894, 8), possessed favorable properties and a predicted low clinical dose (2 mg twice daily). Compound 8 did not show any evidence of immune activation in a mouse drug allergy model. Additionally, plasma samples from toxicology studies confirmed that 8 did not form any reactive metabolites. However, 8 caused the identical microscopic skin lesions in NHPs found with 7, albeit with lower severity. Holistically, this work supports the hypothesis that this unique toxicity may be mechanism-based although additional work is required to confirm this and determine clinical relevance.

Collaboration


Dive into the Matthew R. Reese's collaboration.

Researchain Logo
Decentralizing Knowledge