Matthew Riopel
University of Western Ontario
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew Riopel.
The Journal of Pathology | 2011
Matthew Riopel; Mansa Krishnamurthy; Jinming Li; Shangxi Liu; Andrew Leask; Rennian Wang
β1‐Integrin, a critical regulator of β cell survival and function, has been shown to protect against cell death and promote insulin expression and secretion in rat and human islet cells in vitro. The aim of the present study was to examine whether the knockout of β1‐integrin in collagen I‐producing cells would have physiological and functional implications in pancreatic endocrine cells in vivo. Using adult mice with a conditional knockout of β1‐integrin in collagen I‐producing cells, the effects of β1‐integrin deficiency on glucose metabolism and pancreatic endocrine cells were examined. Male β1‐integrin‐deficient mice display impaired glucose tolerance, with a significant reduction in pancreatic insulin content (p < 0.01). Morphometric analysis revealed a significant reduction in β cell mass (p < 0.001) in β1‐integrin‐deficient mice, along with a significant decrease in β cell proliferation, Pdx‐1 and Nkx6.1 expression when compared with controls. Interestingly, these physiological and morphometric alterations in female β1‐integrin‐deficient mice were less significant. Furthermore, β1‐integrin‐deficient mice displayed decreased FAK (p < 0.05) and ERK1/2 (p < 0.001) phosphorylation, reduced cyclin D1 levels (p < 0.001) and increased caspase 3 cleavage (p < 0.01), while no changes in Akt phosphorylation were observed, indicating that the β1‐integrin signals through the FAK–MAPK–ERK pathway in vivo. Our results demonstrate that β1‐integrin is involved in the regulation of glucose metabolism and contributes to the maintenance of β cell survival and function in vivo. Copyright
Laboratory Investigation | 2013
Matthew Riopel; Jinming Li; Shangxi Liu; Andrew Leask; Rennian Wang
Integrin receptors are responsible for integrating extracellular matrix signals inside the cell. The most prominent integrin receptor, β1 integrin, has a role in cell function, survival and differentiation. Recently, we demonstrated a profound in vivo role of β1 integrin expression in the pancreas on glucose homeostasis and islet function. Here, we extend these results by examining the role of β1 integrin in exocrine pancreatic structure and function. Adult C57Bl/6 mice hemizygous for a collagen type Iα2 (Col1a2) promoter-controlled tamoxifen-inducible Cre recombinase gene and homozygous for loxP-β1 integrin were injected with tamoxifen or corn oil to generate mice deleted or not for β1 integrin. Pancreata derived from these male mice were analyzed by quantitative reverse transcriptase-polymerase chain reaction, western blot and immunofluorescence. Our results showed that β1 integrin-deficient mice displayed a significant decrease in pancreas weight with a significant reduction of amylase, regenerating islet-derived protein II and carboxypeptidase-A expression (P<0.05–0.01). Compared with control pancreata, β1 integrin-deficient pancreata showed reduced mRNA expression of extracellular matrix (collagen type Iα2, fibronectin and laminin) genes (P<0.05), detached acini clusters and lost focal adhesion structure. Moreover, β1 integrin-deficient pancreatic acinar cells displayed decreased proliferation (P<0.05) and increased apoptosis (P<0.001). Apoptosis was reduced to that of controls when isolated exocrine clusters were cultured in media supplemented with extracellular matrix proteins. Taken together, these results implicate β1 integrin as an essential component for maintaining exocrine pancreatic structure and function.
Diabetologia | 2012
Zhi-Chao Feng; Jinming Li; B. A. Turco; Matthew Riopel; Siu-Pok Yee; Rennian Wang
Aims/hypothesisThe receptor tyrosine kinase, c-Kit, and its ligand, stem cell factor, control a variety of cellular processes, including pancreatic beta cell survival and differentiation as revealed in c-KitWv mice, which have a point mutation in the c-Kit allele leading to loss of kinase activity and develop diabetes. The present study further investigated the intrinsic role of c-Kit in beta cells, especially the underlying mechanisms that influence beta cell function.MethodsWe generated a novel transgenic mouse model with c-KIT overexpression specifically in beta cells (c-KitβTg) to further examine the physiological and functional roles of c-Kit in beta cells. Isolated islets from these mice were used to investigate the underlying molecular pathway of c-Kit in beta cells. We also characterised the ability of c-Kit to protect animals from high-fat-diet-induced diabetes, as well as to rescue c-KitWv mice from early onset of diabetes.Resultsc-KitβTg mice exhibited improved beta cell function, with significantly improved insulin secretion, and increased beta cell mass and proliferation in response to high-fat-diet-induced diabetes. c-KitβTg islets exhibited upregulation of: (1) insulin receptor and IRSs; (2) Akt and glycogen synthase kinase 3β phosphorylation; and (3) transcription factors important for islet function. c-KIT overexpression in beta cells also rescued diabetes observed in c-KitWv mice.Conclusions/interpretationThese findings demonstrate that c-Kit plays a direct protective role in beta cells, by regulating glucose metabolism and beta cell function. c-Kit may therefore represent a novel target for treating diabetes.
Laboratory Investigation | 2012
Zhi-Chao Feng; Lisa Donnelly; Jinming Li; Mansa Krishnamurthy; Matthew Riopel; Rennian Wang
Previous studies have shown that the stem cell marker, c-Kit, is involved in glucose homeostasis. We recently reported that c-KitWv/+ male mice displayed the onset of diabetes at 8 weeks of age; however, the mechanisms by which c-Kit regulates β-cell proliferation and function are unknown. The purpose of this study is to examine if c-KitWv/+ mutation-induced β-cell dysfunction is associated with downregulation of the phospho-Akt/Gsk3β pathway in c-KitWv/+ male mice. Histology and cell signaling were examined in C57BL/6J/KitWv/+ (c-KitWv/+) and wild-type (c-Kit+/+) mice using immunofluorescence and western blotting approaches. The Gsk3β inhibitor, 1-azakenpaullone (1-AKP), was administered to c-KitWv/+ and c-Kit+/+ mice for 2 weeks, whereby alterations in glucose metabolism were examined and morphometric analyses were performed. A significant reduction in phosphorylated Akt was observed in the islets of c-KitWv/+ mice (P<0.05) along with a decrease in phosphorylated Gsk3β (P<0.05), and cyclin D1 protein level (P<0.01) when compared with c-Kit+/+ mice. However, c-KitWv/+ mice that received 1-AKP treatment demonstrated normal fasting blood glucose with significantly improved glucose tolerance. 1-AKP-treated c-KitWv/+ mice also showed increased β-catenin, cyclin D1 and Pdx-1 levels in islets, demonstrating that inhibition of Gsk3β activity led to increased β-cell proliferation and insulin secretion. These data suggest that c-KitWv/+ male mice had alterations in the Akt/Gsk3β signaling pathway, which lead to β-cell dysfunction by decreasing Pdx-1 and cyclin D1 levels. Inhibition of Gsk3β could prevent the onset of diabetes by improving glucose tolerance and β-cell function.
Acta Biomaterialia | 2013
Matthew Riopel; William Stuart; Rennian Wang
Extracellular matrix (ECM)-integrin stimulation can promote beta cell differentiation, proliferation and function. However, beta cells lose their insulin secretion function in response to glucose stimulation, and senesce when cultured with ECM proteins for a long time. Fibrin is a provisional ECM protein that is capable of maintaining beta cell function, yet the mechanisms by which this occurs is unknown. The present study examined how fibrin interacts with integrin receptors to promote beta cell cluster formation, proliferation and function. The rat insulinoma cell line, INS-1, was cultured on tissue-culture polystyrene, or with 2-D or 3-D fibrin gels for up to 4 weeks. Cells cultured with fibrin formed islet-like clusters and showed direct contacts with fibrin determined by scanning electron microscopy. Fibrin-cultured INS-1 cells also had significantly increased glucose-stimulated insulin secretion. A significant increase in integrin αvβ3 protein and phosphorylated FAK, Erk1/2 and Akt levels was observed in fibrin-cultured INS-1 cells, which was associated with significantly increased cell proliferation and decreased cell apoptosis. Integrin αvβ3 blockade affected INS-1 cell spreading on fibrin gels, and resulted in significantly decreased FAK phosphorylation and increased cleaved caspase-3 levels. These results show that fibrin promotes beta cell function, proliferation and survival via integrin αvβ3 interactions.
Tissue Engineering Part B-reviews | 2015
Matthew Riopel; Mark Trinder; Rennian Wang
Fibrin is derived from fibrinogen during injury to produce a blood clot and thus promote wound repair. Composed of different domains, including Arg-Gly-Asp amino acid motifs, fibrin is used extensively as a hydrogel and sealant in the clinic. By binding to cell surface receptors like integrins and acting as a supportive 3D scaffold, fibrin has been useful in promoting cell differentiation, proliferation, function, and survival. In particular, fibrin has been able to maintain islet cell architecture, promote beta cell insulin secretion, and islet angiogenesis, as well as inducing a protective effect against cell death. During islet transplantation, fibrin improved neovascularization and islet function. These improvements resulted in reduced number of transplanted islets necessary to reverse diabetes. Therefore, fibrin, as a biocompatible and biodegradable scaffold, should be considered during subcutaneous islet transplantation and beta cell expansion in vitro to ensure maintenance of islet cell function, proliferation, and survival to develop effective cell-based therapies for the treatment of diabetes.
Islets | 2014
Matthew Riopel; Jinming Li; George F. Fellows; Cynthia G. Goodyer; Rennian Wang
Development of the human pancreas is well-known to involve tightly controlled differentiation of pancreatic precursors to mature cells that express endocrine- or exocrine-specific protein products. However, details of human pancreatic development at the ultrastructural level are limited. The present study analyzed 8–20 week fetal age human pancreata using scanning and transmission electron microscopy (TEM), TEM immunogold and double or triple immunofluorescence staining. Primary organization of islets and acini occurred during the developmental period examined. Differentiating endocrine and exocrine cells developed from the ductal tubules and subsequently formed isolated small clusters. Extracellular matrix fibers and proteins accumulated around newly differentiated cells during their migration and cluster formation. Glycogen expression was robust in ductal cells of the pancreas from 8–15 weeks of fetal age; however, this became markedly reduced at 20 weeks, with a concomitant increase in acinar cell glycogen content. Insulin secretory granules transformed from being dense and round at 8 weeks to distinct geometric (multilobular, crystalline) structures by 14–20 weeks. Initially many of the differentiating endocrine cells were multihormonal and contained polyhormonal granules; by 20 weeks, monohormonal cells were in the majority. Interestingly, certain secretory granules in the early human fetal pancreatic cells showed positivity for both exocrine (amylase) and endocrine proteins. This combined ultrastructural and immunohistochemical study showed that, during early developmental stages, the human pancreas contains differentiating epithelial cells that associate closely with the extracellular matrix, have dynamic glycogen expression patterns and contain polyhormonal as well as mixed endocrine/exocrine granules.
American Journal of Physiology-endocrinology and Metabolism | 2013
Zhi-Chao Feng; Matthew Riopel; Jinming Li; Lisa Donnelly; Rennian Wang
c-Kit and its ligand stem cell factor (SCF) are important for β-cell survival and maturation; meanwhile, interactions between the Fas receptor (Fas) and Fas ligand are capable of triggering β-cell apoptosis. Disruption of c-Kit signaling leads to severe loss of β-cell mass and function with upregulation of Fas expression in c-Kit(Wv/+) mouse islets, suggesting that there is a critical balance between c-Kit and Fas activation in β-cells. In the present study, we investigated the interrelationship between c-Kit and Fas activation that mediates β-cell survival and function. We generated double mutant, c-Kit(Wv/+);Fas(lpr/lpr) (Wv(-/-)), mice to study the physiological and functional role of Fas with respect to β-cell function in c-Kit(Wv/+) mice. Isolated islets from these mice and the INS-1 cell line were used. We observed that islets in c-Kit(Wv/+) mice showed a significant increase in β-cell apoptosis along with upregulated p53 and Fas expression. These results were verified in vitro in INS-1 cells treated with SCF or c-Kit siRNA combined with a p53 inhibitor and Fas siRNA. In vivo, Wv(-/-) mice displayed improved β-cell function, with significantly enhanced insulin secretion and increased β-cell mass and proliferation compared with Wv(+/+) mice. This improvement was associated with downregulation of the Fas-mediated caspase-dependent apoptotic pathway and upregulation of the cFlip/NF-κB pathway. These findings demonstrate that a balance between the c-Kit and Fas signaling pathways is critical in the regulation of β-cell survival and function.
Diabetologia | 2015
Zhi-Chao Feng; Matthew Riopel; Alex Popell; Rennian Wang
The interactions between c-Kit and its ligand, stem cell factor (SCF), play an important role in haematopoiesis, pigmentation and gametogenesis. c-Kit is also found in the pancreas, and recent studies have revealed that c-Kit marks a subpopulation of highly proliferative pancreatic endocrine cells that may harbour islet precursors. c-Kit governs and maintains pancreatic endocrine cell maturation and function via multiple signalling pathways. In this review we address the importance of c-Kit signalling within the pancreas, including its profound role in islet morphogenesis, islet vascularisation, and beta cell survival and function. We also discuss the impact of c-Kit signalling in pancreatic disease and the use of c-Kit as a potential target for the development of cell-based and novel drug therapies in the treatment of diabetes.
Oncotarget | 2017
Jason Peart; Jinming Li; Hojun Lee; Matthew Riopel; Zhi-Chao Feng; Rennian Wang
β1 integrin is essential for pancreatic beta-cell development and maintenance in rodents and humans. However, the effects of a temporal beta-cell specific β1 integrin knockout on adult islet function are unknown. We utilized a mouse insulin 1 promoter driven tamoxifen-inducible Cre-recombinase β1 integrin knockout mouse model (MIPβ1KO) to investigate β1 integrin function in adult pancreatic beta-cells. Adult male MIPβ1KO mice were significantly glucose intolerant due to impaired glucose-stimulated insulin secretion in vivo and ex vivo at 8 weeks post-tamoxifen. The expression of Insulin and Pancreatic and duodenal homeobox-1 mRNA was significantly reduced in MIPβ1KO islets, along with reductions in insulin exocytotic proteins. Morphological analyses demonstrated that beta-cell mass, islet density, and the number of large-sized islets was significantly reduced in male MIPβ1KO mice. Significant reductions in the phosphorylation of signaling molecules focal adhesion kinase, extracellular signal-regulated kinases 1 and 2, and v-Akt murine thymoma viral oncogene were observed in male MIPβ1KO islets when compared to controls. MIPβ1KO islets displayed a significant increase in protein levels of the apoptotic marker cleaved-Poly (ADP-ribose) polymerase and a reduction of the cell cycle marker cyclin D1. Female MIPβ1KO mice did not develop glucose intolerance or reduced beta-cell mass until 16 weeks post-tamoxifen. Glucose intolerance remained in both genders of aged MIPβ1KO mice. This data demonstrates that β1 integrin is required for the maintenance of glucose homeostasis through postnatal beta-cell function and expansion.β1 integrin is essential for pancreatic beta-cell development and maintenance in rodents and humans. However, the effects of a temporal beta-cell specific β1 integrin knockout on adult islet function are unknown. We utilized a mouse insulin 1 promoter driven tamoxifen-inducible Cre-recombinase β1 integrin knockout mouse model (MIPβ1KO) to investigate β1 integrin function in adult pancreatic beta-cells. Adult male MIPβ1KO mice were significantly glucose intolerant due to impaired glucose-stimulated insulin secretion in vivo and ex vivo at 8 weeks post-tamoxifen. The expression of Insulin and Pancreatic and duodenal homeobox-1 mRNA was significantly reduced in MIPβ1KO islets, along with reductions in insulin exocytotic proteins. Morphological analyses demonstrated that beta-cell mass, islet density, and the number of large-sized islets was significantly reduced in male MIPβ1KO mice. Significant reductions in the phosphorylation of signaling molecules focal adhesion kinase, extracellular signal-regulated kinases 1 and 2, and v-Akt murine thymoma viral oncogene were observed in male MIPβ1KO islets when compared to controls. MIPβ1KO islets displayed a significant increase in protein levels of the apoptotic marker cleaved-Poly (ADP-ribose) polymerase and a reduction of the cell cycle marker cyclin D1. Female MIPβ1KO mice did not develop glucose intolerance or reduced beta-cell mass until 16 weeks post-tamoxifen. Glucose intolerance remained in both genders of aged MIPβ1KO mice. This data demonstrates that β1 integrin is required for the maintenance of glucose homeostasis through postnatal beta-cell function and expansion.