Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew Ronshaugen is active.

Publication


Featured researches published by Matthew Ronshaugen.


EMBO Reports | 2011

MicroRNA evolution by arm switching.

Sam Griffiths-Jones; Jerome H. L. Hui; Antonio Marco; Matthew Ronshaugen

MicroRNAs (miRNAs) modulate transcript stability and translation. Functional mature miRNAs are processed from one or both arms of the hairpin precursor. The miR‐100/10 family has undergone three independent evolutionary events that have switched the arm from which the functional miRNA is processed. The dominant miR‐10 sequences in the insects Drosophila melanogaster and Tribolium castaneum are processed from opposite arms. However, the duplex produced by Dicer cleavage has an identical sequence in fly and beetle. Expression of the Tribolium miR‐10 sequence in Drosophila S2 cells recapitulates the native beetle pattern. Thus, arm usage is encoded in the primary miRNA sequence, but outside the mature miRNA duplex. We show that the predicted messenger RNA targets and inferred function of sequences from opposite arms differ significantly. Arm switching is likely to be general, and provides a fundamental mechanism to evolve the function of a miRNA locus and target gene network.


Genome Biology and Evolution | 2010

Functional Shifts in Insect microRNA Evolution

Antonio Marco; Jerome H. L. Hui; Matthew Ronshaugen; Sam Griffiths-Jones

MicroRNAs (miRNAs) are short endogenous RNA molecules that regulate gene expression at the posttranscriptional level and have been shown to play critical roles during animal development. The identification and comparison of miRNAs in metazoan species are therefore paramount for our understanding of the evolution of body plans. We have characterized 203 miRNAs from the red flour beetle Tribolium castaneum by deep sequencing of small RNA libraries. We can conclude, from a single study, that the Tribolium miRNA set is at least 15% larger than that in the model insect Drosophila melanogaster (despite tens of high-throughput sequencing experiments in the latter). The rate of birth and death of miRNAs is high in insects. Only one-third of the Tribolium miRNA sequences are conserved in D. melanogaster, and at least 18 Tribolium miRNAs are conserved in vertebrates but lost in Drosophila. More than one-fifth of miRNAs that are conserved between Tribolium and Drosophila exhibit changes in the transcription, genomic organization, and processing patterns that lead to predicted functional shifts. For example, 13% of conserved miRNAs exhibit seed shifting, and we describe arm-switching events in 11% of orthologous pairs. These shifts fundamentally change the predicted targets and therefore function of orthologous miRNAs. In general, Tribolium miRNAs are more representative of the insect ancestor than Drosophila miRNAs and are more conserved in vertebrates.


Nucleic Acids Research | 2013

Clusters of microRNAs emerge by new hairpins in existing transcripts

Antonio Marco; Maria Ninova; Matthew Ronshaugen; Sam Griffiths-Jones

Genetic linkage may result in the expression of multiple products from a polycistronic transcript, under the control of a single promoter. In animals, protein-coding polycistronic transcripts are rare. However, microRNAs are frequently clustered in the genomes of animals, and these clusters are often transcribed as a single unit. The evolution of microRNA clusters has been the subject of much speculation, and a selective advantage of clusters of functionally related microRNAs is often proposed. However, the origin of microRNA clusters has not been so far explored. Here, we study the evolution of microRNA clusters in Drosophila melanogaster. We observed that the majority of microRNA clusters arose by the de novo formation of new microRNA-like hairpins in existing microRNA transcripts. Some clusters also emerged by tandem duplication of a single microRNA. Comparative genomics show that these clusters are unlikely to split or undergo rearrangements. We did not find any instances of clusters appearing by rearrangement of pre-existing microRNA genes. We propose a model for microRNA cluster evolution in which selection over one of the microRNAs in the cluster interferes with the evolution of the other linked microRNAs. Our analysis suggests that the study of microRNAs and small RNAs must consider linkage associations.


PLOS Neglected Tropical Diseases | 2013

Sex-biased expression of microRNAs in Schistosoma mansoni.

Antonio Marco; Ana Kozomara; Jerome H. L. Hui; Aidan M. Emery; David Rollinson; Sam Griffiths-Jones; Matthew Ronshaugen

Schistosomiasis is an important neglected tropical disease caused by digenean helminth parasites of the genus Schistosoma. Schistosomes are unusual in that they are dioecious and the adult worms live in the blood system. MicroRNAs play crucial roles during gene regulation and are likely to be important in sex differentiation in dioecious species. Here we characterize 112 microRNAs from adult Schistosoma mansoni individuals, including 84 novel microRNA families, and investigate the expression pattern in different sexes. By deep sequencing, we measured the relative expression levels of conserved and newly identified microRNAs between male and female samples. We observed that 13 microRNAs exhibited sex-biased expression, 10 of which are more abundant in females than in males. Sex chromosomes showed a paucity of female-biased genes, as predicted by theoretical evolutionary models. We propose that the recent emergence of separate sexes in Schistosoma had an effect on the chromosomal distribution and evolution of microRNAs, and that microRNAs are likely to participate in the sex differentiation/maintenance process.


Silence | 2012

MicroRNAs from the same precursor have different targeting properties

Antonio Marco; Jamie I. MacPherson; Matthew Ronshaugen; Sam Griffiths-Jones

BackgroundThe processing of a microRNA results in an intermediate duplex of two potential mature products that derive from the two arms (5′ and 3′) of the precursor hairpin. It is often suggested that one of the sequences is degraded and the other is incorporated into the RNA-induced silencing complex. However, both precursor arms may give rise to functional levels of mature microRNA and the dominant product may change from species to species, from tissue to tissue, or between developmental stages. Therefore, both arms of the precursor have the potential to produce functional mature microRNAs.ResultsWe have investigated the relationship between predicted mRNA targets of mature sequences derived from the 5′ and 3′ arms of the same pre-microRNAs. Using six state-of-the-art target prediction algorithms, we find that 5′/3′ microRNA pairs target different sites in 3′ untranslated regions of mRNAs. We also find that these pairs do not generally target overlapping sets of genes, or functionally related genes.ConclusionsWe show that alternative mature products produced from the same precursor microRNAs have different targeting properties and therefore different biological functions. These data strongly suggest that developmental or evolutionary changes in arm choice will have significant functional consequences.


BMC Biology | 2017

The house spider genome reveals an ancient whole-genome duplication during arachnid evolution.

Evelyn E. Schwager; Prashant P. Sharma; Thomas H. Clarke; Daniel J. Leite; Torsten Wierschin; Matthias Pechmann; Yasuko Akiyama-Oda; Lauren Esposito; Jesper Bechsgaard; Trine Bilde; Alexandra D. Buffry; Hsu Chao; Huyen Dinh; HarshaVardhan Doddapaneni; Shannon Dugan; Cornelius Eibner; Cassandra G. Extavour; Peter Funch; Jessica E. Garb; Luis B. Gonzalez; Vanessa L. González; Sam Griffiths-Jones; Yi Han; Cheryl Y. Hayashi; Maarten Hilbrant; Daniel S.T. Hughes; Ralf Janssen; Sandra L. Lee; Ignacio Maeso; Shwetha C. Murali

BackgroundThe duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum.ResultsWe found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication.ConclusionsOur results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.


Current Biology | 2013

Evolution of mir-92a Underlies Natural Morphological Variation in Drosophila melanogaster

Saad Arif; Sophie Murat; Isabel Almudi; Maria D. S. Nunes; Diane Bortolamiol-Becet; Naomi S. McGregor; James Michael Stevenson Currie; Harri Hughes; Matthew Ronshaugen; Élio Sucena; Eric C. Lai; Christian Schlötterer; Alistair P. McGregor

Summary Identifying the genetic mechanisms underlying phenotypic change is essential to understanding how gene regulatory networks and ultimately the genotype-to-phenotype map evolve. It is recognized that microRNAs (miRNAs) have the potential to facilitate evolutionary change [1–3]; however, there are no known examples of natural morphological variation caused by evolutionary changes in miRNA expression. Therefore, the contribution of miRNAs to evolutionary change remains unknown [1, 4]. Drosophila melanogaster subgroup species display a portion of trichome-free cuticle on the femur of the second leg called the “naked valley.” It was previously shown that Ultrabithorax (Ubx) is involved in naked valley variation between D. melanogaster and D. simulans [5, 6]. However, naked valley size also varies among populations of D. melanogaster, ranging from 1,000 up to 30,000 μm2. We investigated the genetic basis of intraspecific differences in the naked valley in D. melanogaster and found that neither Ubx nor shavenbaby (svb) [7, 8] contributes to this morphological difference. Instead, we show that changes in mir-92a expression underlie the evolution of naked valley size in D. melanogaster through repression of shavenoid (sha) [9]. Therefore, our results reveal a novel mechanism for morphological evolution and suggest that modulation of the expression of miRNAs potentially plays a prominent role in generating organismal diversity.


Development Genes and Evolution | 2008

Context-dependent regulation of Hox protein functions by CK2 phosphorylation sites

Ouarda Taghli-Lamallem; Cheryl C. Hsia; Matthew Ronshaugen; William McGinnis

Variations in Hox protein sequences and functions have been proposed to contribute to evolutionary changes in appendage shape and number in crustaceans and insects. One model is that insect Hox proteins of the Ultrabithorax (UBX) ortholog class evolved increased abilities to repress Distal-less (Dll) transcription and appendage development in part through the loss of serine and threonine residues in casein kinase 2 (CK2) phosphorylation sites. To explore this possibility, we constructed and tested the appendage repression function of chimeric proteins with insertions of different CK2 consensus sites or phosphomimetics of CK2 sites in C-terminal regions of Drosophila melanogaster UBX. Our results indicate that CK2 sites C-terminal to the homeodomain can inhibit the appendage repression functions of UBX proteins, but only in the context of specific amino acid sequences. Our results, combined with previous findings on evolutionary changes in Hox protein, suggest how intra-protein regulatory changes can diversify Hox protein function, and thus animal morphology.


RNA | 2014

Fast-evolving microRNAs are highly expressed in the early embryo of Drosophila virilis

Maria Ninova; Matthew Ronshaugen; Sam Griffiths-Jones

MicroRNAs are short non-protein-coding RNAs that regulate gene expression at the post-transcriptional level and are essential for the embryonic development of multicellular animals. Comparative genome-scale analyses have revealed that metazoan evolution is accompanied by the continuous acquisition of novel microRNA genes. This suggests that novel microRNAs may promote innovation and diversity in development. We determined the evolutionary origins of extant Drosophila microRNAs and estimated the sequence divergence between the 130 orthologous microRNAs in Drosophila melanogaster and Drosophila virilis, separated by 63 million years of evolution. We then generated small RNA sequencing data sets covering D. virilis development and explored the relationship between microRNA conservation and expression in a developmental context. We find that late embryonic, larval, and adult stages are dominated by conserved microRNAs. This pattern, however, does not hold for the early embryo, where rapidly evolving microRNAs are uniquely present at high levels in both species. The group of fast-evolving microRNAs that are highly expressed in the early embryo belong to two Drosophilid lineage-specific clusters: mir-310 ∼ 313 and mir-309 ∼ 6. These clusters have particularly complex evolutionary histories of duplication, gain, and loss. Our analyses suggest that the early embryo is a more permissive environment for microRNA changes and innovations. Fast-evolving microRNAs, therefore, have the opportunity to become preferentially integrated in early developmental processes, and may impact the evolution of development. The relationship between microRNA conservation and expression throughout the development of Drosophila differs from that previously observed for protein-coding genes.


PLOS ONE | 2014

Target Repression Induced by Endogenous microRNAs: Large Differences, Small Effects.

Ana Kozomara; Suzanne M. Hunt; Maria Ninova; Sam Griffiths-Jones; Matthew Ronshaugen

MicroRNAs are small RNAs that regulate protein levels. It is commonly assumed that the expression level of a microRNA is directly correlated with its repressive activity – that is, highly expressed microRNAs will repress their target mRNAs more. Here we investigate the quantitative relationship between endogenous microRNA expression and repression for 32 mature microRNAs in Drosophila melanogaster S2 cells. In general, we find that more abundant microRNAs repress their targets to a greater degree. However, the relationship between expression and repression is nonlinear, such that a 10-fold greater microRNA concentration produces only a 10% increase in target repression. The expression/repression relationship is the same for both dominant guide microRNAs and minor mature products (so-called passenger strands/microRNA* sequences). However, we find examples of microRNAs whose cellular concentrations differ by several orders of magnitude, yet induce similar repression of target mRNAs. Likewise, microRNAs with similar expression can have very different repressive abilities. We show that the association of microRNAs with Argonaute proteins does not explain this variation in repression. The observed relationship is consistent with the limiting step in target repression being the association of the microRNA/RISC complex with the target site. These findings argue that modest changes in cellular microRNA concentration will have minor effects on repression of targets.

Collaboration


Dive into the Matthew Ronshaugen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Ninova

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerome H. L. Hui

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Kozomara

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Andreas Prokop

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Daniel J. Leite

Oxford Brookes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge