Matthew S. Block
University of California, Santa Barbara
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew S. Block.
Physical Review Letters | 2011
Matthew S. Block; D. N. Sheng; Olexei I. Motrunich; Matthew P. A. Fisher
We study a spin-1/2 system with Heisenberg plus ring exchanges on a four-leg triangular ladder using the density matrix renormalization group and Gutzwiller variational wave functions. Near an isotropic lattice regime, for moderate to large ring exchanges we find a spin Bose-metal phase with a spinon Fermi sea consisting of three partially filled bands. Going away from the triangular towards the square lattice regime, we find a staggered dimer phase with dimers in the transverse direction, while for small ring exchanges the system is in a featureless rung phase. We also discuss parent states and a possible phase diagram in two dimensions.
Physical Review Letters | 2013
Matthew S. Block; Roger G. Melko; Ribhu K. Kaul
We present an extensive quantum Monte Carlo study of the Néel to valence-bond solid (VBS) phase transition on rectangular- and honeycomb-lattice SU(N) antiferromagnets in sign-problem-free models. We find that in contrast to the honeycomb lattice and previously studied square-lattice systems, on the rectangular lattice for small N, a first-order Néel-VBS transition is realized. On increasing N≥4, we observe that the transition becomes continuous and with the same universal exponents as found on the honeycomb and square lattices (studied here for N=5, 7, 10), providing strong support for a deconfined quantum critical point. Combining our new results with previous numerical and analytical studies, we present a general phase diagram of the stability of CPN-1 fixed points with q monopoles.
Nature | 2012
Hong-Chen Jiang; Matthew S. Block; Ryan V. Mishmash; James R. Garrison; D. N. Sheng; Olexei I. Motrunich; Matthew P. A. Fisher
Developing a theoretical framework for conducting electronic fluids qualitatively distinct from those described by Landau’s Fermi-liquid theory is of central importance to many outstanding problems in condensed matter physics. One such problem is that, above the transition temperature and near optimal doping, high-transition-temperature copper-oxide superconductors exhibit ‘strange metal’ behaviour that is inconsistent with being a traditional Landau Fermi liquid. Indeed, a microscopic theory of a strange-metal quantum phase could shed new light on the interesting low-temperature behaviour in the pseudogap regime and on the d-wave superconductor itself. Here we present a theory for a specific example of a strange metal—the ‘d-wave metal’. Using variational wavefunctions, gauge theoretic arguments, and ultimately large-scale density matrix renormalization group calculations, we show that this remarkable quantum phase is the ground state of a reasonable microscopic Hamiltonian—the usual t–J model with electron kinetic energy t and two-spin exchange J supplemented with a frustrated electron ‘ring-exchange’ term, which we here examine extensively on the square lattice two-leg ladder. These findings constitute an explicit theoretical example of a genuine non-Fermi-liquid metal existing as the ground state of a realistic model.
Physical Review Letters | 2011
Matthew S. Block; Ryan V. Mishmash; Ribhu K. Kaul; D. N. Sheng; Olexei I. Motrunich; Matthew P. A. Fisher
We present evidence for an exotic gapless insulating phase of hard-core bosons on multileg ladders with a density commensurate with the number of legs. In particular, we study in detail a model of bosons moving with direct hopping and frustrating ring exchange on a 3-leg ladder at ν=1/3 filling. For sufficiently large ring exchange, the system is insulating along the ladder but has two gapless modes and power law transverse density correlations at incommensurate wave vectors. We propose a determinantal wave function for this phase and find excellent comparison between variational Monte Carlo and density matrix renormalization group calculations on the model Hamiltonian, thus providing strong evidence for the existence of this exotic phase. Finally, we discuss extensions of our results to other N-leg systems and to N-layer two-dimensional structures.
Physical Review B | 2011
Ryan V. Mishmash; Matthew S. Block; Ribhu K. Kaul; D. N. Sheng; Olexei I. Motrunich; Matthew P. A. Fisher
We establish compelling evidence for the existence of new quasi-one-dimensional descendants of the d-wave Bose liquid (DBL), an exotic two-dimensional quantum phase of uncondensed itinerant bosons characterized by surfaces of gapless excitations in momentum space [O. I. Motrunich and M. P. A. Fisher Phys. Rev. B 75 235116 (2007)]. In particular, motivated by a strong-coupling analysis of the gauge theory for the DBL, we study a model of hard-core bosons moving on the N-leg square ladder with frustrating four-site ring exchange. Here, we focus on four- and three-leg systems where we have identified two novel phases: a compressible gapless Bose metal on the four-leg ladder and an incompressible gapless Mott insulator on the three-leg ladder. The former is conducting along the ladder and has five gapless modes, one more than the number of legs. This represents a significant step forward in establishing the potential stability of the DBL in two dimensions. The latter, on the other hand, is a fundamentally quasi-one-dimensional phase that is insulating along the ladder but has two gapless modes and incommensurate power-law transverse density-density correlations. While we have already presented results on this latter phase elsewhere [ M. S. Block et al. Phys. Rev. Lett. 106 046402 (2011)], we will expand upon those results in this work. In both cases, we can understand the nature of the phase using slave-particle-inspired variational wave functions consisting of a product of two distinct Slater determinants, the properties of which compare impressively well to a density matrix renormalization group solution of the model Hamiltonian. Stability arguments are made in favor of both quantum phases by accessing the universal low-energy physics with a bosonization analysis of the appropriate quasi-1D gauge theory. We will briefly discuss the potential relevance of these findings to high-temperature superconductors, cold atomic gases, and frustrated quantum magnets.
Nature | 1960
Matthew S. Block
Physical Review B | 2015
Jonathan Demidio; Matthew S. Block; Ribhu K. Kaul
Physical Review B | 2012
Matthew S. Block; Ribhu K. Kaul
Bulletin of the American Physical Society | 2017
Matthew S. Block; Ribhu K. Kaul
Bulletin of the American Physical Society | 2013
Ryan V. Mishmash; Hong-Chen Jiang; Matthew S. Block; James R. Garrison; D. N. Sheng; Olexei I. Motrunich; Matthew P. A. Fisher