Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew S. Grubb is active.

Publication


Featured researches published by Matthew S. Grubb.


Nature Reviews Neuroscience | 2006

Adult neurogenesis and functional plasticity in neuronal circuits

Pierre-Marie Lledo; Mariana Alonso; Matthew S. Grubb

The adult brain is a plastic place. To ensure that the mature nervous systems control of behaviour is flexible in the face of a varying environment, morphological and physiological changes are possible at many levels, including that of the entire cell. In two areas of the adult brain — the olfactory bulb and the dentate gyrus — new neurons are generated throughout life and form an integral part of the normal functional circuitry. This process is not fixed, but highly modulated, revealing a plastic mechanism by which the brains performance can be optimized for a given environment. The functional benefits of this whole-cell plasticity, however, remain a matter for debate.


Behavioural Brain Research | 2003

Ventral hippocampal lesions affect anxiety but not spatial learning.

David M. Bannerman; Matthew S. Grubb; Robert M. J. Deacon; Benjamin K. Yee; Joram Feldon; J. N. P. Rawlins

Rats with cytotoxic ventral hippocampal lesions which removed approximately 50% of the hippocampus (including dentate gyrus) starting from the temporal pole, displayed a reduction in freezing behaviour following the delivery of an unsignalled footshock in an operant chamber. This was more plausibly a result of reduced susceptibility to fear than a result of a lesion-induced increase in general motor activity. There was no consistent difference between sham and lesioned animals in spontaneous locomotor activity, or locomotion following acute or chronic treatment with amphetamine. In contrast, ventral hippocampal lesioned animals were quicker to pass from the black to the white box during a modified version of the light/dark exploration test, and were quicker to begin eating during tests of hyponeophagia. Furthermore, rats with ventral hippocampal lesions defecated less than their sham counterparts both during open field testing and in extinction sessions following contextual conditioning. In contrast to these clear lesion effects, there were no signs of any spatial learning impairment either in the watermaze or on the elevated T-maze. Taken together these results suggest that the ventral hippocampus may play a role in a brain system (or systems) associated with fear and/or anxiety, and provide further evidence for a distinct specialisation of function along the septotemporal axis of the hippocampus.


Nature | 2010

Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability

Matthew S. Grubb; Juan Burrone

In neurons, the axon initial segment (AIS) is a specialized region near the start of the axon that is the site of action potential initiation. The precise location of the AIS varies across and within different neuronal types, and has been linked to cells’ information-processing capabilities; however, the factors determining AIS position in individual neurons remain unknown. Here we show that changes in electrical activity can alter the location of the AIS. In dissociated hippocampal cultures, chronic depolarization with high extracellular potassium moves multiple components of the AIS, including voltage-gated sodium channels, up to 17 μm away from the soma of excitatory neurons. This movement reverses when neurons are returned to non-depolarized conditions, and depends on the activation of T- and/or L-type voltage-gated calcium channels. The AIS also moved distally when we combined long-term LED (light-emitting diode) photostimulation with sparse neuronal expression of the light-activated cation channel channelrhodopsin-2; here, burst patterning of activity was successful where regular stimulation at the same frequency failed. Furthermore, changes in AIS position correlate with alterations in current thresholds for action potential spiking. Our results show that neurons can regulate the position of an entire subcellular structure according to their ongoing levels and patterns of electrical activity. This novel form of activity-dependent plasticity may fine-tune neuronal excitability during development.


Behavioral Neuroscience | 2002

Double dissociation of function within the hippocampus: Spatial memory and hyponeophagia

David M. Bannerman; Robert M. J. Deacon; S Offen; J Friswell; Matthew S. Grubb; J. N. P. Rawlins

Complete and dorsal hippocampal lesions impaired spatial performance on 2 working memory tasks: rewarded alternation on the T maze and matching to position in the water maze. In contrast, ventral hippocampal lesions had no effect on these tasks, even when task difficulty was increased by the introduction of delays. Ventral lesions did resemble complete lesions in reducing anxiety in 3 commonly used tests of anxiety (social interaction, plus-maze, and hyponeophagia). Dorsal lesions also appeared to be anxiolytic in the social interaction and plus-maze tests, but they did not affect hyponeophagia. Complete- and dorsal-lesioned rats displayed hyperactivity, whereas ventral-lesioned rats did not. These results show a double dissociation between dorsal and ventral hippocampal lesions (hyponeophagia vs. spatial memory), suggesting differentiation of function along the septotemporal axis of this structure.


Neuron | 2003

Abnormal Functional Organization in the Dorsal Lateral Geniculate Nucleus of Mice Lacking the β2 Subunit of the Nicotinic Acetylcholine Receptor

Matthew S. Grubb; Francesco M. Rossi; Jean-Pierre Changeux; Ian D. Thompson

Spontaneous activity patterns in the developing retina appear important for the functional organization of the visual system. We show here that an absence of early retinal waves in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor (nAChR) is associated with both gain and loss of functional organization in the dorsal lateral geniculate nucleus (dLGN). Anatomical studies show normal gross retinotopy in the beta2(-/-) dLGN but suggest reduced topographic precision in the retinogeniculate projection. Physiological recordings reveal normal topography in the dorsoventral visual axis but a lack of fine-scale mapping in the nasotemporal visual plane. In contrast, unlike wild-type mice, on- and off-center cells in the beta2(-/-) dLGN are spatially segregated. The presence of the beta2 subunit of the nAChR in the CNS is therefore important for normal functional organization in the retinogeniculate projection.


Journal of Neural Engineering | 2010

Multi-site optical excitation using ChR2 and micro-LED array.

Nir Grossman; Vincent Poher; Matthew S. Grubb; Gordon T. Kennedy; Konstantin Nikolic; Brian McGovern; Rolando Berlinguer Palmini; Zheng Gong; Emmanuel M. Drakakis; Mark A. A. Neil; Martin D. Dawson; Juan Burrone; Patrick Degenaar

Studying neuronal processes such as synaptic summation, dendritic physiology and neural network dynamics requires complex spatiotemporal control over neuronal activities. The recent development of neural photosensitization tools, such as channelrhodopsin-2 (ChR2), offers new opportunities for non-invasive, flexible and cell-specific neuronal stimulation. Previously, complex spatiotemporal control of photosensitized neurons has been limited by the lack of appropriate optical devices which can provide 2D stimulation with sufficient irradiance. Here we present a simple and powerful solution that is based on an array of high-power micro light-emitting diodes (micro-LEDs) that can generate arbitrary optical excitation patterns on a neuronal sample with micrometre and millisecond resolution. We first describe the design and fabrication of the system and characterize its capabilities. We then demonstrate its capacity to elicit precise electrophysiological responses in cultured and slice neurons expressing ChR2.


The Journal of Neuroscience | 2008

Turning Astrocytes from the Rostral Migratory Stream into Neurons: A Role for the Olfactory Sensory Organ

Mariana Alonso; Inmaculada Ortega-Perez; Matthew S. Grubb; Jean-Pierre Bourgeois; Pierre Charneau; Pierre-Marie Lledo

Neurogenesis persists within a few restricted areas of the adult mammalian brain, giving rise to neurons that functionally integrate into preexisting circuits. One of these areas, the subventricular zone (SVZ), was believed, until recently, to be the unique source providing the adult olfactory bulb (OB) with newborn neurons. Because of the fact that neuroblasts derived in the SVZ migrate through the rostral migratory stream (RMS) en route to the OB, the existence of candidate neural stem cells within the RMS was long overlooked. Here, we confirm and considerably extend recent evidence for the existence of adult neural stem cells within the RMS, and go on to investigate their proliferative regulation. Specifically targeting RMS-astrocytes with lentiviral vectors encoding GFP, we demonstrate that glial cells in the RMS differentiate into both OB granule and periglomerular interneurons. In addition, ultrastructural analysis unambiguously reveals the astrocytic nature of stem cells in the adult RMS, and patch-clamp recordings demonstrate the functional integration of RMS-derived interneurons into OB circuitry. Proliferative regulation was investigated via two contrasting manipulations: exposure to an odor-enriched environment that enhances candidate stem cell proliferation in both the RMS and SVZ, and chemical lesion of the main olfactory epithelium that increases cell proliferation in the RMS only. New neurons in the adult OB can therefore arise from different neurogenic areas that can be separately regulated.


Photochemistry and Photobiology | 2009

Photocycles of Channelrhodopsin-2

Konstantin Nikolic; Nir Grossman; Matthew S. Grubb; Juan Burrone; Chris Toumazou; Patrick Degenaar

Recent developments have used light‐activated channels or transporters to modulate neuronal activity. One such genetically‐encoded modulator of activity, channelrhodopsin‐2 (ChR2), depolarizes neurons in response to blue light. In this work, we first conducted electrophysiological studies of the photokinetics of hippocampal cells expressing ChR2, for various light stimulations. These and other experimental results were then used for systematic investigation of the previously proposed three‐state and four‐state models of the ChR2 photocycle. We show the limitations of the previously suggested three‐state models and identify a four‐state model that accurately follows the ChR2 photocurrents. We find that ChR2 currents decay biexponentially, a fact that can be explained by the four‐state model. The model is composed of two closed (C1 and C2) and two open (O1 and O2) states, and our simulation results suggest that they might represent the dark‐adapted (C1‐O1) and light‐adapted (C2‐O2) branches. The crucial insight provided by the analysis of the new model is that it reveals an adaptation mechanism of the ChR2 molecule. Hence very simple organisms expressing ChR2 can use this form of light adaptation.


The Journal of Neuroscience | 2011

Short- and Long-Term Plasticity at the Axon Initial Segment

Matthew S. Grubb; Yousheng Shu; Hiroshi Kuba; Matthew N. Rasband; Verena C. Wimmer; Kevin J. Bender

The axon initial segment (AIS) is a highly specialized neuronal subregion that is the site of action potential initiation and the boundary between axonal and somatodendritic compartments. In recent years, our understanding of the molecular structure of the AIS, its maturation, and its multiple fundamental roles in neuronal function has seen major advances. We are beginning to appreciate that the AIS is dynamically regulated, both over short timescales via adaptations in ion channel function, and long timescales via activity-dependent structural reorganization. Here, we review results from this emerging field highlighting how structural and functional plasticity relate to the development of the initial segment, and to neuronal disorders linked to AIS dysfunction.


Current Opinion in Neurobiology | 2004

The influence of early experience on the development of sensory systems.

Matthew S. Grubb; Ian D. Thompson

Once sensory stimuli become able to alter firing patterns in the developing brain, they can influence the maturation of neuronal circuits. Recent experimental studies add to our understanding of precisely which developmental events are affected by early experience. In particular, it appears that experience of the external environment can affect the brain earlier in development and at earlier stages of sensory processing than previously thought. These studies emphasise the developmental importance of the patterning of neuronal firing produced either by sensory stimuli or by spontaneous activity. The timing of action potentials is also an important aspect of several exciting studies describing the mechanisms - anatomical, synaptic, and molecular - by which early experience brings about alterations in the maturation of sensory circuitry. Importantly, this kind of approach can lead to predictions concerning the nature of sensory stimulation that is most effective in instructing brain development.

Collaboration


Dive into the Matthew S. Grubb's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nir Grossman

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge