Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew T. Andrews is active.

Publication


Featured researches published by Matthew T. Andrews.


Trends in Endocrinology and Metabolism | 2009

Torpor induction in mammals: Recent discoveries fueling new ideas

Richard G. Melvin; Matthew T. Andrews

When faced with a harsh climate or inadequate food, some mammals enter a state of suspended animation known as torpor. A major goal of torpor research is to determine mechanisms that integrate environmental cues, gene expression and metabolism to produce periods of torpor lasting from hours to weeks. Recent discoveries spanning the Metazoa suggest that sirtuins, the mammalian circadian clock, fibroblast growth factor 21 (FGF21) and lipids are involved in torpor induction. For example, sirtuins link cellular energy status to the mammalian circadian clock, oxidative stress and metabolic fuel selection. In this review, we discuss how these recent discoveries form a new hypothesis linking changes in the physical environment with changes in the expression of genes that regulate torpor induction.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009

Adaptive mechanisms regulate preferred utilization of ketones in the heart and brain of a hibernating mammal during arousal from torpor

Matthew T. Andrews; Kevin P. Russeth; Lester R. Drewes; Pierre Gilles Henry

Hibernating mammals use reduced metabolism, hypothermia, and stored fat to survive up to 5 or 6 mo without feeding. We found serum levels of the fat-derived ketone, D-beta-hydroxybutyrate (BHB), are highest during deep torpor and exist in a reciprocal relationship with glucose throughout the hibernation season in the thirteen-lined ground squirrel (Spermophilus tridecemlineatus). Ketone transporter monocarboxylic acid transporter 1 (MCT1) is upregulated at the blood-brain barrier, as animals enter hibernation. Uptake and metabolism of 13C-labeled BHB and glucose were measured by high-resolution NMR in both brain and heart at several different body temperatures ranging from 7 to 38 degrees C. We show that BHB and glucose enter the heart and brain under conditions of depressed body temperature and heart rate but that their utilization as a fuel is highly selective. During arousal from torpor, glucose enters the brain over a wide range of body temperatures, but metabolism is minimal, as only low levels of labeled metabolites are detected. This is in contrast to BHB, which not only enters the brain but is also metabolized via the tricarboxylic acid (TCA) cycle. A similar situation is seen in the heart as both glucose and BHB are transported into the organ, but only 13C from BHB enters the TCA cycle. This finding suggests that fuel selection is controlled at the level of individual metabolic pathways and that seasonally induced adaptive mechanisms give rise to the strategic utilization of BHB during hibernation.


PLOS ONE | 2011

Deep Sequencing the Transcriptome Reveals Seasonal Adaptive Mechanisms in a Hibernating Mammal

Marshall Hampton; Richard G. Melvin; Anne H. Kendall; Brian R. Kirkpatrick; Nichole Peterson; Matthew T. Andrews

Mammalian hibernation is a complex phenotype involving metabolic rate reduction, bradycardia, profound hypothermia, and a reliance on stored fat that allows the animal to survive for months without food in a state of suspended animation. To determine the genes responsible for this phenotype in the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) we used the Roche 454 platform to sequence mRNA isolated at six points throughout the year from three key tissues: heart, skeletal muscle, and white adipose tissue (WAT). Deep sequencing generated approximately 3.7 million cDNA reads from 18 samples (6 time points ×3 tissues) with a mean read length of 335 bases. Of these, 3,125,337 reads were assembled into 140,703 contigs. Approximately 90% of all sequences were matched to proteins in the human UniProt database. The total number of distinct human proteins matched by ground squirrel transcripts was 13,637 for heart, 12,496 for skeletal muscle, and 14,351 for WAT. Extensive mitochondrial RNA sequences enabled a novel approach of using the transcriptome to construct the complete mitochondrial genome for I. tridecemlineatus. Seasonal and activity-specific changes in mRNA levels that met our stringent false discovery rate cutoff (1.0×10−11) were used to identify patterns of gene expression involving various aspects of the hibernation phenotype. Among these patterns are differentially expressed genes encoding heart proteins AT1A1, NAC1 and RYR2 controlling ion transport required for contraction and relaxation at low body temperatures. Abundant RNAs in skeletal muscle coding ubiquitin pathway proteins ASB2, UBC and DDB1 peak in October, suggesting an increase in muscle proteolysis. Finally, genes in WAT that encode proteins involved in lipogenesis (ACOD, FABP4) are highly expressed in August, but gradually decline in expression during the seasonal transition to lipolysis.


PLOS ONE | 2013

Seasonal and Regional Differences in Gene Expression in the Brain of a Hibernating Mammal

Christine Schwartz; Marshall Hampton; Matthew T. Andrews

Mammalian hibernation presents a unique opportunity to study naturally occurring neuroprotection. Hibernating ground squirrels undergo rapid and extreme physiological changes in body temperature, oxygen consumption, and heart rate without suffering neurological damage from ischemia and reperfusion injury. Different brain regions show markedly different activity during the torpor/arousal cycle: the cerebral cortex shows activity only during the periodic returns to normothermia, while the hypothalamus is active over the entire temperature range. Therefore, region-specific neuroprotective strategies must exist to permit this compartmentalized spectrum of activity. In this study, we use the Illumina HiSeq platform to compare the transcriptomes of these two brain regions at four collection points across the hibernation season: April Active, October Active, Torpor, and IBA. In the cerebral cortex, 1,085 genes were found to be differentially expressed across collection points, while 1,063 genes were differentially expressed in the hypothalamus. Comparison of these transcripts indicates that the cerebral cortex and hypothalamus implement very different strategies during hibernation, showing less than 20% of these differentially expressed genes in common. The cerebral cortex transcriptome shows evidence of remodeling and plasticity during hibernation, including transcripts for the presynaptic cytomatrix proteins bassoon and piccolo, and extracellular matrix components, including laminins and collagens. Conversely, the hypothalamic transcriptome displays upregulation of transcripts involved in damage response signaling and protein turnover during hibernation, including the DNA damage repair gene RAD50 and ubiquitin E3 ligases UBR1 and UBR5. Additionally, the hypothalamus transcriptome also provides evidence of potential mechanisms underlying the hibernation phenotype, including feeding and satiety signaling, seasonal timing mechanisms, and fuel utilization. This study provides insight into potential neuroprotective strategies and hibernation control mechanisms, and also specifically shows that the hibernator brain exhibits both seasonal and regional differences in mRNA expression.


Journal of Neurochemistry | 2007

Brain energy metabolism and neurotransmission at near-freezing temperatures: in vivo 1 H MRS study of a hibernating mammal

Pierre Gilles Henry; Kevin P. Russeth; Ivan Tkáč; Lester R. Drewes; Matthew T. Andrews; Rolf Gruetter

The brain of a hibernating mammal withstands physiological extremes that would result in cerebral damage and death in a non‐hibernating species such as humans. To examine the possibility that this neuroprotection results from alterations in cerebral metabolism, we used in vivo1H NMR spectroscopy at high field (9.4 T) to measure the concentration of 18 metabolites (neurochemical profile) in the brain of 13‐lined ground squirrels (Spermophilus tridecemlineatus) before, during, and after hibernation. Resolved in vivo1H NMR spectra were obtained even at low temperature in torpid hibernators (∼7°C). The phosphocreatine‐to‐creatine ratio was increased during torpor (+143%) indicating energy storage, and remained increased to a lesser extent during interbout arousal (IBA) (+83%). The total γ‐aminobutyric acid concentration was increased during torpor (+135%) and quickly returned to baseline during IBA. Glutamine (Gln) was decreased (−54%) during torpor but quickly returned to normal levels during IBA and after terminal arousal in the spring. Glutamate (Glu) was also decreased during torpor (−17%), but remained decreased during IBA (−20% compared with fall), and returned to normal level in the spring. Our observation that Glu and Gln levels are depressed in the brain of hibernators suggests that the balance between anaplerosis and loss of Glu and Gln (because of glutamatergic neurotransmission or other mechanisms) is altered in hibernation.


PLOS ONE | 2013

Transcriptomic Analysis of Brown Adipose Tissue across the Physiological Extremes of Natural Hibernation

Marshall Hampton; Richard G. Melvin; Matthew T. Andrews

We used RNAseq to generate a comprehensive transcriptome of Brown Adipose Tissue (BAT) over the course of a year in the naturally hibernating thirteen-lined ground squirrel, Ictidomys tridecemlineatus. During hibernation ground squirrels do not feed and use fat stored in White Adipose Tissue (WAT) as their primary source of fuel. Stored lipid is consumed at high rates by BAT to generate heat at specific points during the hibernation season. The highest rate of BAT activity occurs during periodic arousals from hypothermic torpor bouts, referred to as Interbout Arousals (IBAs). IBAs are characterized by whole body re-warming (from 5 to 37 °C) in 2-3 hours, and provide a unique opportunity to determine the genes responsible for the highly efficient lipid oxidation and heat generation that drives the arousal process. Illumina HighSeq sequencing identified 14,573 distinct BAT mRNAs and quantified their levels at four points: active ground squirrels in April and October, and hibernating animals during both torpor and IBA. Based on significant changes in mRNA levels across the four collection points, 2,083 genes were shown to be differentially expressed. In addition to providing detail on the expression of nuclear genes encoding mitochondrial proteins, and genes involved in beta-adrenergic and lipolytic pathways, we identified differentially expressed genes encoding various transcription factors and other regulatory proteins which may play critical roles in high efficiency fat catabolism, non-shivering thermogenesis, and transitions into and out of the torpid state.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Circulation and metabolic rates in a natural hibernator: an integrative physiological model

Marshall Hampton; Bethany T. Nelson; Matthew T. Andrews

Small hibernating mammals show regular oscillations in their heart rate and body temperature throughout the winter. Long periods of torpor are abruptly interrupted by arousals with heart rates that rapidly increase from 5 beats/min to over 400 beats/min and body temperatures that increase by ∼30°C only to drop back into the hypothermic torpid state within hours. Surgically implanted transmitters were used to obtain high-resolution electrocardiogram and body temperature data from hibernating thirteen-lined ground squirrels (Spermophilus tridecemlineatus). These data were used to construct a model of the circulatory system to gain greater understanding of these rapid and extreme changes in physiology. Our model provides estimates of metabolic rates during the torpor-arousal cycles in different model compartments that would be difficult to measure directly. In the compartment that models the more metabolically active tissues and organs (heart, brain, liver, and brown adipose tissue) the peak metabolic rate occurs at a core body temperature of 19°C approximately midway through an arousal. The peak metabolic rate of the active tissues is nine times the normothermic rate after the arousal is complete. For the overall metabolic rate in all tissues, the peak-to-resting ratio is five. This value is high for a rodent, which provides evidence for the hypothesis that the arousal from torpor is limited by the capabilities of the cardiovascular system.


Shock | 2010

Small-volume d-β-hydroxybutyrate solution infusion increases survivability of lethal hemorrhagic shock in rats.

Amanda H. Klein; Scott M. Wendroth; Lester R. Drewes; Matthew T. Andrews

A small-volume therapeutic approach based on the biochemistry of hibernating mammals was evaluated to test the hypothesis that passive hypothermia and systemic administration of d-&bgr;-hydroxybutyrate (d-BHB) plus melatonin will increase survival of animals subjected to hemorrhagic shock ([HS] 60% blood loss). Anesthetized Sprague-Dawley male rats (320 ± 23 g) underwent controlled loss of 60% blood volume. Rats were instrumented to measure mean arterial pressure, body temperature (Tb), and heart rate. A passive decrease in rat Tb in response to HS significantly increased survival over animals maintained at 37°C (n = 5-6). Infusion of 4 M d-BHB, at a volume of only 5.5% of the total blood removed, significantly prolonged survival to a mean of 3 h compared with 90 min using equal osmolar 4 M NaCl (n = 6). In experiments where the shed blood was returned after 1 h of 60% blood loss, 4% fluid replacement with 4 M d-BHB plus 43 mM melatonin significantly prolonged survival up to 10 days after blood return compared with 4 M NaCl plus 43 mM melatonin and other control solutions (n = 10). We conclude that a slow decrease in animal Tb resulting from 60% blood loss, combined with infusion of 4 M d-BHB plus 43 mM melatonin, was beneficial for long-term survival after return of shed blood. This HS therapy is designed as a portable low-volume solution for further evaluation in a large-animal model and is ultimately intended for use in HS patients by first responders.


Current Topics in Developmental Biology | 2013

Circannual Transitions in Gene Expression: Lessons from Seasonal Adaptations

Christine Schwartz; Matthew T. Andrews

Circannual timing is important for the coordination of seasonal activities, particularly promoting the survival of individuals in adverse conditions through adaptive physiological and behavioral changes. This includes optimizing the survival of offspring by coordinating reproductive efforts at appropriate times. Thus, timing is very important for overall fitness. In this chapter, we provide several examples of circannually timed events, including mammalian hibernation, discussing the physiological changes that accompany these events, and some of the known genes and pathways underlying these changes. We then describe five candidate systems that are potentially involved in circannual timing. Finally, we discuss several recent advances in molecular biology and animal husbandry that have made the use of nonmodel organisms for research more feasible, which will hopefully promote and encourage further advancement in the knowledge of circannual timing.


Physiological Genomics | 2015

Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal

Katie L. Vermillion; Kyle Anderson; Marshall Hampton; Matthew T. Andrews

Throughout the hibernation season, the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) experiences extreme fluctuations in heart rate, metabolism, oxygen consumption, and body temperature, along with prolonged fasting and immobility. These conditions necessitate different functional requirements for the heart, which maintains contractile function throughout hibernation, and the skeletal muscle, which remains largely inactive. The adaptations used to maintain these contractile organs under such variable conditions serves as a natural model to study a variety of medically relevant conditions including heart failure and disuse atrophy. To better understand how two different muscle tissues maintain function throughout the extreme fluctuations of hibernation we performed Illumina HiSeq 2000 sequencing of cDNAs to compare the transcriptome of heart and skeletal muscle across the circannual cycle. This analysis resulted in the identification of 1,076 and 1,466 differentially expressed genes in heart and skeletal muscle, respectively. In both heart and skeletal muscle we identified a distinct cold-tolerant mechanism utilizing peroxisomal metabolism to make use of elevated levels of unsaturated depot fats. The skeletal muscle transcriptome also shows an early increase in oxidative capacity necessary for the altered fuel utilization and increased oxygen demand of shivering. Expression of the fetal gene expression profile is used to maintain cardiac tissue, either through increasing myocyte size or proliferation of resident cardiomyocytes, while skeletal muscle function and mass are protected through transcriptional regulation of pathways involved in protein turnover. This study provides insight into how two functionally distinct muscles maintain function under the extreme conditions of mammalian hibernation.

Collaboration


Dive into the Matthew T. Andrews's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teresa L. Squire

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard G. Melvin

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge