Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew T. Kieber-Emmons is active.

Publication


Featured researches published by Matthew T. Kieber-Emmons.


Chemical Reviews | 2014

Copper Active Sites in Biology

Edward I. Solomon; David E. Heppner; Esther M. Johnston; Jake W. Ginsbach; Jordi Cirera; Munzarin F. Qayyum; Matthew T. Kieber-Emmons; Christian H. Kjaergaard; Ryan G. Hadt; Li Tian

Based on its generally accessible I/II redox couple and bioavailability, copper plays a wide variety of roles in nature that mostly involve electron transfer (ET), O2 binding, activation and reduction, NO2− and N2O reduction and substrate activation. Copper sites that perform ET are the mononuclear blue Cu site that has a highly covalent CuII-S(Cys) bond and the binuclear CuA site that has a Cu2S(Cys)2 core with a Cu-Cu bond that keeps the site delocalized (Cu(1.5)2) in its oxidized state. In contrast to inorganic Cu complexes, these metalloprotein sites transfer electrons rapidly often over long distances, as has been previously reviewed.1–4 Blue Cu and CuA sites will only be considered here in their relation to intramolecular ET in multi-center enzymes. The focus of this review is on the Cu enzymes (Figure 1). Many are involved in O2 activation and reduction, which has mostly been thought to involve at least two electrons to overcome spin forbiddenness and the low potential of the one electron reduction to superoxide (Figure 2).5,6 Since the Cu(III) redox state has not been observed in biology, this requires either more than one Cu center or one copper and an additional redox active organic cofactor. The latter is formed in a biogenesis reaction of a residue (Tyr) that is also Cu catalyzed in the first turnover of the protein. Recently, however, there have been a number of enzymes suggested to utilize one Cu to activate O2 by 1e− reduction to form a Cu(II)-O2•− intermediate (an innersphere redox process) and it is important to understand the active site requirements to drive this reaction. The oxidases that catalyze the 4e−reduction of O2 to H2O are unique in that they effectively perform this reaction in one step indicating that the free energy barrier for the second two-electron reduction of the peroxide product of the first two-electron step is very low. In nature this requires either a trinuclear Cu cluster (in the multicopper oxidases) or a Cu/Tyr/Heme Fe cluster (in the cytochrome oxidases). The former accomplishes this with almost no overpotential maximizing its ability to oxidize substrates and its utility in biofuel cells, while the latter class of enzymes uses the excess energy to pump protons for ATP synthesis. In bacterial denitrification, a mononuclear Cu center catalyzes the 1e- reduction of nitrite to NO while a unique µ4S2−Cu4 cluster catalyzes the reduction of N2O to N2 and H2O, a 2e− process yet requiring 4Cu’s. Finally there are now several classes of enzymes that utilize an oxidized Cu(II) center to activate a covalently bound substrate to react with O2. Figure 1 Copper active sites in biology. Figure 2 Latimer Diagram for Oxygen Reduction at pH = 7.0 Adapted from References 5 and 6. This review presents in depth discussions of all these classes of Cu enzymes and the correlations within and among these classes. For each class we review our present understanding of the enzymology, kinetics, geometric structures, electronic structures and the reaction mechanisms these have elucidated. While the emphasis here is on the enzymology, model studies have significantly contributed to our understanding of O2 activation by a number of Cu enzymes and are included in appropriate subsections of this review. In general we will consider how the covalency of a Cu(II)–substrate bond can activate the substrate for its spin forbidden reaction with O2, how in binuclear Cu enzymes the exchange coupling between Cu’s overcomes the spin forbiddenness of O2 binding and controls electron transfer to O2 to direct catalysis either to perform two e− electrophilic aromatic substitution or 1e− H-atom abstraction, the type of oxygen intermediate that is required for H-atom abstraction from the strong C-H bond of methane (104 kcal/mol) and how the trinuclear Cu cluster and the Cu/Tyr/Heme Fe cluster achieve their very low barriers for the reductive cleavage of the O-O bond. Much of the insight available into these mechanisms in Cu biochemistry has come from the application of a wide range of spectroscopies and the correlation of spectroscopic results to electronic structure calculations. Thus we start with a tutorial on the different spectroscopic methods utilized to study mononuclear and multinuclear Cu enzymes and their correlations to different levels of electronic structure calculations.


Faraday Discussions | 2011

Copper Dioxygen (Bio)Inorganic Chemistry

Edward I. Solomon; Jake W. Ginsbach; David E. Heppner; Matthew T. Kieber-Emmons; Christian H. Kjaergaard; Pieter J. Smeets; Li Tian; Julia S. Woertink

Cu/O2 intermediates in biological, homogeneous, and heterogeneous catalysts exhibit unique spectral features that reflect novel geometric and electronic structures that make significant contributions to reactivity. This review considers how the respective intermediate electronic structures overcome the spin-forbidden nature of O2 binding, activate O2 for electrophilic aromatic attack and H-atom abstraction, catalyze the 4 e- reduction of O2 to H2O, and discusses the role of exchange coupling between Cu ions in determining reactivity.


Inorganic Chemistry | 2010

Heme-Copper-Dioxygen Complexes: Toward Understanding Ligand-Environmental Effects on the Coordination Geometry, Electronic Structure, and Reactivity

Zakaria Halime; Matthew T. Kieber-Emmons; Munzarin F. Qayyum; Biplab Mondal; Thirumanavelan Gandhi; Simona C. Puiu; Eduardo E. Chufán; Amy A. Narducci Sarjeant; Keith O. Hodgson; Britt Hedman; Edward I. Solomon; Kenneth D. Karlin

The nature of the ligand is an important aspect of controlling the structure and reactivity in coordination chemistry. In connection with our study of heme-copper-oxygen reactivity relevant to cytochrome c oxidase dioxygen-reduction chemistry, we compare the molecular and electronic structures of two high-spin heme-peroxo-copper [Fe(III)O(2)(2-)Cu(II)](+) complexes containing N(4) tetradentate (1) or N(3) tridentate (2) copper ligands. Combining previously reported and new resonance Raman and EXAFS data coupled to density functional theory calculations, we report a geometric structure and more complete electronic description of the high-spin heme-peroxo-copper complexes 1 and 2, which establish mu-(O(2)(2-)) side-on to the Fe(III) and end-on to Cu(II) (mu-eta(2):eta(1)) binding for the complex 1 but side-on/side-on (mu-eta(2):eta(2)) mu-peroxo coordination for the complex 2. We also compare and summarize the differences and similarities of these two complexes in their reactivity toward CO, PPh(3), acid, and phenols. The comparison of a new X-ray structure of mu-oxo complex 2a with the previously reported 1a X-ray structure, two thermal decomposition products respectively of 2 and 1, reveals a considerable difference in the Fe-O-Cu angle between the two mu-oxo complexes ( angleFe-O-Cu = 178.2 degrees in 1a and angleFe-O-Cu = 149.5 degrees in 2a). The reaction of 2 with 1 equiv of an exogenous nitrogen-donor axial base leads to the formation of a distinctive low-temperature-stable, low-spin heme-dioxygen-copper complex (2b), but under the same conditions, the addition of an axial base to 1 leads to the dissociation of the heme-peroxo-copper assembly and the release of O(2). 2b reacts with phenols performing H-atom (e(-) + H(+)) abstraction resulting in O-O bond cleavage and the formation of high-valent ferryl [Fe(IV)=O] complex (2c). The nature of 2c was confirmed by a comparison of its spectroscopic features and reactivity with those of an independently prepared ferryl complex. The phenoxyl radical generated by the H-atom abstraction was either (1) directly detected by electron paramagnetic resonance spectroscopy using phenols that produce stable radicals or (2) indirectly detected by the coupling product of two phenoxyl radicals.


Vaccine | 2003

Priming characteristics of peptide mimotopes of carbohydrate antigens.

Behjatolah Monzavi-Karbassi; Shahram Shamloo; Matthew T. Kieber-Emmons; Fariba Jousheghany; Ping Luo; Kaity Y Lin; Gina Cunto-Amesty; David B. Weiner; Thomas Kieber-Emmons

Immunization with peptide mimetics of carbohydrate antigens can induce functional carbohydrate-reactive antibodies. Here, we examine the immune characteristics of alternative approaches in prime and boost strategies using glycosylated HIV-1 envelope protein and model tumor associated carbohydrate antigens. Our results indicate that peptide mimotopes either in a DNA or carrier-conjugated format can induce comparable levels of IgM and IgG. Carbohydrate boosting of peptide-primed animals does not affect end-point titer, however, boosting mediates a stable long lasting carbohydrate reactive IgM response, not achievable by carbohydrate immunization alone. Boosting with carbohydrate in animals primed with DNA- or peptide-conjugate, facilitates the induction of detectable IgG with a dominant IgG2a isotype. Immunization with HIV-1 envelope glycoprotein of peptide-primed animals induces different IgG isotype profiles with a dominant IgG1 antibody. We observed that HIV-1 envelope glycoprotein immunization of peptide primed mice induces a cross-reactive cellular response, as detected by cytokine secretion, which lends to IFN-gamma production upon splenocyte stimulation and CTL activity against recombinant vaccinia virus infected cells after in vitro stimulation. DNA immunization with mimotope, inclusion of a T-cell epitope from the HIV-1 envelope protein in the expression cassette and co-administration with IL-12 or GM-CSF encoding plasmids activate a cellular response to the HIV-1 envelope protein.


Angewandte Chemie | 2012

Spectroscopic elucidation of a new heme/copper dioxygen structure type: implications for O···O bond rupture in cytochrome c oxidase.

Matthew T. Kieber-Emmons; Munzarin F. Qayyum; Yuqi Li; Zakaria Halime; Keith O. Hodgson; Britt Hedman; Kenneth D. Karlin; Edward I. Solomon

Cytochrome c oxidase (CcO) catalyzes the four electron reduction of dioxygen to form water in the terminal step of the electron transport chain.[1] Dioxygen binds to a unique heme-copper bimetallic active site, wherein the copper is ligated ~5 A above the heme by three His residues.[2–3] One of these ligating His residues is covalently crosslinked to a nearby Tyr residue. The crosslinked Tyr is thought to participate in catalysis by providing the fourth electron needed to cleave the O-O bond in a net H• abstraction.[4] This hypothesis stems from the observation of an intermediate state (PM) in CcO that occurs after O-O bond cleavage, which is suggested to contain a tyrosyl radical based on chemical and spectral evidence.[5–8] The only observable enzymatic dioxygen intermediate before O-O bond rupture has been assigned as a ferric-superoxo species (A),[9–10] leading some to suggest this species is directly responsible for the net H• abstraction from the Tyr.[11–12] We and others favor an alternative mechanistic scenario, in which an unobserved peroxo intermediate functions as the active oxidant.[13–15] A putative peroxo moiety would take advantage of the His-Tyr crosslink and the copper ion as a pathway to access the fourth electron necessary for cleavage of its O-O bond. However, heme-peroxo-copper adducts are generally unreactive towards phenols, motivating efforts towards understanding factors required for O-O bond rupture by heme-copper sites. Recently, we reported preliminary evidence that the reaction of a heme-peroxo-copper adduct {[F8Fe]-O2-[CuAN]}+ (1, F8 = 5,10,15,20-tetrakis-(2,6-difluorophenyl)-porphyrinate, AN = bis(3-(dimethylamino)-propyl)-amine) with a coordinating base DCHIm (DCHIm = 1,5-dicyclohexylimidazole) results in formation of a discrete complex (2) that has enhanced reactivity towards phenols.[16] Herein we report the molecular and electronic structure of 2, which is an example of a heme-peroxo-copper complex in which the electronic state of the heme fragment is low-spin (LS).[17] Concomitant with the change in spin of the heme fragment from high-spin (HS) to LS upon conversion from 1 to 2, the Fe-O2-Cu core undergoes a change from µ-η2:η2 (“side-on”) in 1 to µ-1,2 (“end-on”) in 2 (Scheme 1). This novel bridging mode has not been observed previously in heme-copper model complexes, but it has been proposed in recent crystallographic studies on resting CcO.[18–20] However, comparison of the spectral features of resting CcO to those described herein for 2 reveal inconsistencies suggesting a reevaluation of the bridging mode of the peroxo group in resting CcO and providing insight into the electronic structure requirements for O-O bond cleavage.


Inorganic Chemistry | 2010

Sulfur Donor Atom Effects on Copper(I)/O2 Chemistry with Thioanisole Containing Tetradentate N3S Ligand Leading to μ-1,2-Peroxo-Dicopper(II) Species

Yunho Lee; Dong-Heon Lee; Ga Young Park; Heather R. Lucas; Amy A. Narducci Sarjeant; Matthew T. Kieber-Emmons; Michael A. Vance; Ashley E. Milligan; Edward I. Solomon; Kenneth D. Karlin

To better understand the effect of thioether coordination in copper-O(2) chemistry, the tetradentate N(3)S ligand L(ASM) (2-(methylthio)-N,N-bis((pyridin-2-yl)methyl)benzenamine) and related alkylether ligand L(EOE) (2-ethoxy-N,N-bis((pyridin-2-yl)methyl)ethanamine) have been studied. The corresponding copper(I) complexes, [(L(ASM))Cu(I)](+) (1a) and [(L(EOE))Cu(I)](+) (3a), were studied as were the related compound [(L(ESE))Cu(I)](+) (2a, L(ESE) = (2-ethylthio-N,N-bis((pyridin-2-yl)methyl)ethanamine). The X-ray structure of 1a and its solution conductivity reveal a monomeric molecular structure possessing thioether coordination which persists in solution. In contrast, the C-O stretching frequencies of the derivative Cu(I)-CO complexes reveal that for these complexes, the modulated ligand arms, whether arylthioether, alkylthioether, or ether, are not coordinated to the cuprous ion. Electrochemical data for 1a and 2a in CH(3)CN and N,N-dimethylformamide (DMF) show the thioanisole moiety to be a poor electron donor compared to alkylthioether (1a is ∼200 mV more positive than 2a). The structures of [(L(ASM))Cu(II)(CH(3)OH)](2+) (1c) and [(L(ESE))Cu(II)(CH(3)OH)](2+) (2c) have also been obtained and indicate nearly identical copper coordination environments. Oxygenation of 1a at reduced temperature gives a characteristic deep blue intermediate [{(L(ASM))Cu(II)}(2)(O(2)(2-))](2+) (1b(P)) with absorption features at 442 (1,500 M(-1) cm(-1)), 530 (8,600 M(-1) cm(-1)), and 605 nm (10,400 M(-1) cm(-1)); these values compare well to the ligand-to-metal charge-transfer (LMCT) transitions previously reported for [{(L(ESE))Cu(II)}(2)(O(2)(2-))](2+) (2b(P)). Resonance Raman data for [{(L(ASM))Cu(II)}(2)(O(2)(2-))](2+) (1b(P)) support the formation of μ-1,2-peroxo species ν(O-O) = 828 cm(-1)(Δ((18)O(2)) = 48), ν(sym)(Cu-O) = 547 cm(-1) (Δ((18)O(2)) = 23), and ν(asym)(Cu-O) = 497 cm(-1) (Δ((18)O(2)) = 22) and suggest the L(ASM) ligand is a poorer electron donor to copper than is L(ESE). In contrast, the oxygenation of [(L(EOE))Cu(I)](+) (3a), possessing an ether donor as an analogue of the thioether in L(ESE), led to the formation of a bis(μ-oxo) species [{(L(EOE))Cu(III)}(2)(O(2-))(2)](2+) (3b(O); 380 nm, ε ∼ 10,000 M(-1) cm(-1)). This result provides further support for the sulfur influence in 1b(P) and 2b(P), in particular coordination of the sulfur to the Cu. Thermal decomposition of 1b(P) is accompanied by ligand sulfoxidation. The structure of [{(L(EOE))Cu(II)(Cl)}(2)](+) (3c) generated from the reductive dehalogenation of organic chlorides suggests that the ether moiety is weakly bound to the cupric ion. A detailed discussion of the spectroscopic and structural characteristics of 1b(P), 2b(P), and 3b(O) is presented.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Structure/function correlations among coupled binuclear copper proteins through spectroscopic and reactivity studies of NspF

Jake W. Ginsbach; Matthew T. Kieber-Emmons; Ryohei Nomoto; Akio Noguchi; Yasuo Ohnishi; Edward I. Solomon

The terminal step of 4-hydroxy-3-nitrosobenzamide biosynthesis in Streptomyces murayamaensis is performed by NspF, a mono-oxygenase that converts o-aminophenols to the corresponding nitroso product (hydroxyanilinase activity). Previous biochemical characterization of the resting form of NspF suggested that this enzyme belonged to the coupled binuclear copper enzyme (CBC) family. Another member of this enzyme family, tyrosinase, is able to mono-oxygenate monophenols (monophenolase activity) but not o-aminophenols. To gain insight into the unique reactivity of NspF, we have generated and characterized the oxy form of its active site. The observation of spectral features identical to those of oxy-tyrosinase indicates that oxy-NspF contains a Cu2O2 core where peroxide is coordinated in a μ-η2∶ η2 mode, confirming that NspF is a CBC enzyme. This oxy form is found to react with monophenols, indicating that, like tyrosinase, NspF also possesses monophenolase activity. A comparison of the two electrophilic mechanisms for the monophenolase and hydroxyanilinase activity indicates a large geometric change between their respective transition states. The potential for specific interactions between the protein pocket and the substrate in each transition state is discussed within the context of the differential reactivity of this family of enzymes with equivalent μ-η2∶η2 peroxy bridged coupled binuclear copper active sites.


Inorganic Chemistry | 2011

Electronic structure of a low-spin heme/Cu peroxide complex: spin-state and spin-topology contributions to reactivity.

Matthew T. Kieber-Emmons; Yuqi Li; Zakaria Halime; Kenneth D. Karlin; Edward I. Solomon

This study details the electronic structure of the heme–peroxo–copper adduct {[(F8)Fe(DCHIm)]-O2-[Cu(AN)]}+ (LS(AN)) in which O2(2–) bridges the metals in a μ-1,2 or “end-on” configuration. LS(AN) is generated by addition of coordinating base to the parent complex {[(F8)Fe]-O2-[Cu(AN)]}+ (HS(AN)) in which the O2(2–) bridges the metals in an μ-η2:η2 or “side-on” mode. In addition to the structural change of the O2(2–) bridging geometry, coordination of the base changes the spin state of the heme fragment (from S = 5/2 in HS(AN) to S = 1/2 in LS(AN)) that results in an antiferromagnetically coupled diamagnetic ground state in LS(AN). The strong ligand field of the porphyrin modulates the high-spin to low-spin effect on Fe–peroxo bonding relative to nonheme complexes, which is important in the O–O bond cleavage process. On the basis of DFT calculations, the ground state of LS(AN) is dependent on the Fe–O–O–Cu dihedral angle, wherein acute angles (<~150°) yield an antiferromagnetically coupled electronic structure while more obtuse angles yield a ferromagnetic ground state. LS(AN) is diamagnetic and thus has an antiferromagnetically coupled ground state with a calculated Fe–O–O–Cu dihedral angle of 137°. The nature of the bonding in LS(AN) and the frontier molecular orbitals which lead to this magneto-structural correlation provide insight into possible spin topology contributions to O–O bond cleavage by cytochrome c oxidase.


Dalton Transactions | 2009

Synthetic Analogs for Evaluating the Influence of N-H---S Hydrogen Bonds on the Formation of Thioester in Acetyl Coenzyme A Synthase

Piyal W. G. Ariyananda; Matthew T. Kieber-Emmons; Glenn P. A. Yap; Charles G. Riordan

A series of square planar methylnickel(II) complexes, (dppe)Ni(Me)(SAr) (dppe = 1,2-bis(diphenylphosphino)ethane); 2. Ar = phenyl; 3. Ar = pentafluorophenyl; 4. Ar = o-pivaloylaminophenyl; 5. Ar = p-pivaloylaminophenyl; (depe)Ni(Me)(SAr), (depe = 1,2-bis(diethylphosphino)ethane); 7. Ar = phenyl; 8. Ar = pentafluorophenyl; 9. Ar = o-pivaloylaminophenyl; 10. Ar = p-pivaloylaminophenyl), were synthesized via the reaction of (dppe)NiMe(2) (1) and (depe)NiMe(2) (6) with either the corresponding thiol or disulfide. These complexes were characterized by various spectroscopic methods including (31)P NMR, (1)H NMR, (13)C NMR and infrared spectroscopies and in most cases by X-ray diffraction analyses. Solid state and solution measurements establish that 4 and 9 contain intramolecular N-H...S bonds. Carbonylation of the complexes 2-4, 7-10 leads to (dRpe)Ni(CO)(2) and MeC(O)SAr via the intermediacy of the acylnickel adducts, (dRpe)Ni(C(O)Me)(SAr), detected at low temperature by (31)P NMR spectroscopy. Consistent with experimental observations, density functional theory results reveal that the intramolecular hydrogen bond in 9 stabilizes the acylnickel adduct compared with its non-hydrogen-bonded adduct, 10. Oxidative addition of MeC(O)SC(6)F(5) to (dRpe)Ni(COD) followed by spontaneous decarbonylation proceeds in variable yields generating 3 and 8.


Journal of the American Chemical Society | 2017

Electrocatalytic Water Oxidation by a Homogeneous Copper Catalyst Disfavors Single-Site Mechanisms

Sara J. Koepke; Kenneth M. Light; Peter E. VanNatta; Keaton M. Wiley; Matthew T. Kieber-Emmons

Deployment of solar fuels derived from water requires robust oxygen-evolving catalysts made from earth abundant materials. Copper has recently received much attention in this regard. Mechanistic parallels between Cu and single-site Ru/Ir/Mn water oxidation catalysts, including intermediacy of terminal Cu oxo/oxyl species, are prevalent in the literature; however, intermediacy of late transition metal oxo species would be remarkable given the high d-electron count would fill antibonding orbitals, making these species high in energy. This may suggest alternate pathways are at work in copper-based water oxidation. This report characterizes a dinuclear copper water oxidation catalyst, {[(L)Cu(II)]2-(μ-OH)2}(OTf)2 (L = Me2TMPA = bis((6-methyl-2-pyridyl)methyl)(2-pyridylmethyl)amine) in which water oxidation proceeds with high Faradaic efficiency (>90%) and moderate rates (33 s-1 at ∼1 V overpotential, pH 12.5). A large kinetic isotope effect (kH/kD = 20) suggests proton coupled electron transfer in the initial oxidation as the rate-determining step. This species partially dissociates in aqueous solution at pH 12.5 to generate a mononuclear {[(L)Cu(II)(OH)]}+ adduct (Keq = 0.0041). Calculations that reproduce the experimental findings reveal that oxidation of either the mononuclear or dinuclear species results in a common dinuclear intermediate, {[LCu(III)]2-(μ-O)2}2+, which avoids formation of terminal Cu(IV)═O/Cu(III)-O• intermediates. Calculations further reveal that both intermolecular water nucleophilic attack and redox isomerization of {[LCu(III)]2-(μ-O)2}2+ are energetically accessible pathways for O-O bond formation. The consequences of these findings are discussed in relation to differences in water oxidation pathways between Cu catalysts and catalysts based on Ru, Ir, and Mn.

Collaboration


Dive into the Matthew T. Kieber-Emmons's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas C. Brunold

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Britt Hedman

SLAC National Accelerator Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge