Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew W. Brown is active.

Publication


Featured researches published by Matthew W. Brown.


Journal of Eukaryotic Microbiology | 2012

The revised classification of eukaryotes.

Sina M. Adl; Alastair G. B. Simpson; Christopher E. Lane; Julius Lukeš; David Bass; Samuel S. Bowser; Matthew W. Brown; Fabien Burki; Micah Dunthorn; Vladimír Hampl; Aaron A. Heiss; Mona Hoppenrath; Enrique Lara; Line Le Gall; Denis H. Lynn; Hilary A. McManus; Edward A. D. Mitchell; Sharon E. Mozley-Stanridge; Laura Wegener Parfrey; Jan Pawlowski; Sonja Rueckert; Laura Shadwick; Conrad L. Schoch; Alexey V. Smirnov; Frederick W. Spiegel

This revision of the classification of eukaryotes, which updates that of Adl et al. [J. Eukaryot. Microbiol. 52 (2005) 399], retains an emphasis on the protists and incorporates changes since 2005 that have resolved nodes and branches in phylogenetic trees. Whereas the previous revision was successful in re‐introducing name stability to the classification, this revision provides a classification for lineages that were then still unresolved. The supergroups have withstood phylogenetic hypothesis testing with some modifications, but despite some progress, problematic nodes at the base of the eukaryotic tree still remain to be statistically resolved. Looking forward, subsequent transformations to our understanding of the diversity of life will be from the discovery of novel lineages in previously under‐sampled areas and from environmental genomic information.


Nature Communications | 2013

The Capsaspora genome reveals a complex unicellular prehistory of animals

Hiroshi Suga; Zehua Chen; Alex de Mendoza; Arnau Sebé-Pedrós; Matthew W. Brown; Eric Kramer; Martin Carr; Pierre Kerner; Michel Vervoort; Núria Sánchez-Pons; Guifré Torruella; Romain Derelle; Gerard Manning; B. Franz Lang; Carsten Russ; Brian J. Haas; Andrew J. Roger; Chad Nusbaum; Iñaki Ruiz-Trillo

To reconstruct the evolutionary origin of multicellular animals from their unicellular ancestors, the genome sequences of diverse unicellular relatives are essential. However, only the genome of the choanoflagellate Monosiga brevicollis has been reported to date. Here we completely sequence the genome of the filasterean Capsaspora owczarzaki, the closest known unicellular relative of metazoans besides choanoflagellates. Analyses of this genome alter our understanding of the molecular complexity of metazoans’ unicellular ancestors showing that they had a richer repertoire of proteins involved in cell adhesion and transcriptional regulation than previously inferred only with the choanoflagellate genome. Some of these proteins were secondarily lost in choanoflagellates. In contrast, most intercellular signalling systems controlling development evolved later concomitant with the emergence of the first metazoans. We propose that the acquisition of these metazoan-specific developmental systems and the co-option of pre-existing genes drove the evolutionary transition from unicellular protists to metazoans.


Molecular Biology and Evolution | 2009

Phylogeny of the “Forgotten” Cellular Slime Mold, Fonticula alba, Reveals a Key Evolutionary Branch within Opisthokonta

Matthew W. Brown; Frederick W. Spiegel; Jeffrey D. Silberman

The shared ancestry between Fungi and animals has been unequivocally demonstrated by abundant molecular and morphological data for well over a decade. Along with the animals and Fungi, multiple protists have been placed in the supergroup Opisthokonta making it exceptionally diverse. In an effort to place the cellular slime mold Fonticula alba, an amoeboid protist with aggregative, multicellular fruiting, we sequenced five nuclear encoded genes; small subunit ribosomal RNA, actin, beta-tubulin, elongation factor 1-alpha, and the cytosolic isoform of heat shock protein 70 for phylogenetic analyses. Molecular trees demonstrate that Fonticula is an opisthokont that branches sister to filose amoebae in the genus Nuclearia. Fonticula plus Nuclearia are sister to Fungi. We propose a new name for this well-supported clade, Nucletmycea, incorporating Nuclearia, Fonticula, and Fungi. Fonticula represents the first example of a cellular slime mold morphology within Opisthokonta. Thus, there are four types of multicellularity in the supergroup-animal, fungal, colonial, and now aggregative. Our data indicate that multicellularity in Fonticula evolved independent of that found in the fungal and animal radiations. With the rapidly expanding sequence and genomic data becoming available from many opisthokont lineages, Fonticula may be fundamental to understanding opisthokont evolution as well as any possible commonalities involved with the evolution of multicellularity.


PLOS ONE | 2009

Eumycetozoa = Amoebozoa?: SSUrDNA Phylogeny of Protosteloid Slime Molds and Its Significance for the Amoebozoan Supergroup

Lora L. Shadwick; Frederick W. Spiegel; John D. Shadwick; Matthew W. Brown; Jeffrey D. Silberman

Amoebae that make fruiting bodies consisting of a stalk and spores and classified as closely related to the myxogastrids have classically been placed in the taxon Eumycetozoa. Traditionally, there are three groups comprising Eumycetozoa: myxogastrids, dictyostelids, and the so-called protostelids. Dictyostelids and myxogastrids both make multicellular fruiting bodies that may contain hundreds of spores. Protostelids are those amoebae that make simple fruiting bodies consisting of a stalk and one or a few spores. Protostelid-like organisms have been suggested as the progenitors of the myxogastrids and dictyostelids, and they have been used to formulate hypotheses on the evolution of fruiting within the group. Molecular phylogenies have been published for both myxogastrids and dictyostelids, but little molecular phylogenetic work has been done on the protostelids. Here we provide phylogenetic trees based on the small subunit ribosomal RNA gene (SSU) that include 21 protostelids along with publicly available sequences from a wide variety of amoebae and other eukaryotes. SSU trees recover seven well supported clades that contain protostelids but do not appear to be specifically related to one another and are often interspersed among established groups of amoebae that have never been reported to fruit. In fact, we show that at least two taxa unambiguously belong to amoebozoan lineages where fruiting has never been reported. These analyses indicate that we can reject a monophyletic Eumycetozoa, s.l. For this reason, we will hereafter refer to those slime molds with simple fruiting as protosteloid amoebae and/or protosteloid slime molds, not as protostelids. These results add to our understanding of amoebozoan biodiversity, and demonstrate that the paradigms for understanding both nonfruiting and sporulating amoebae must be integrated. Finally, we suggest strategies for future research on protosteloid amoebae and nonfruiting amoebae, and discuss the impact of this work for taxonomists and phylogenomicists.


Cold Spring Harbor Perspectives in Biology | 2014

On the Age of Eukaryotes: Evaluating Evidence from Fossils and Molecular Clocks

Laura Eme; Susan C. Sharpe; Matthew W. Brown; Andrew J. Roger

Our understanding of the phylogenetic relationships among eukaryotic lineages has improved dramatically over the few past decades thanks to the development of sophisticated phylogenetic methods and models of evolution, in combination with the increasing availability of sequence data for a variety of eukaryotic lineages. Concurrently, efforts have been made to infer the age of major evolutionary events along the tree of eukaryotes using fossil-calibrated molecular clock-based methods. Here, we review the progress and pitfalls in estimating the age of the last eukaryotic common ancestor (LECA) and major lineages. After reviewing previous attempts to date deep eukaryote divergences, we present the results of a Bayesian relaxed-molecular clock analysis of a large dataset (159 proteins, 85 taxa) using 19 fossil calibrations. We show that for major eukaryote groups estimated dates of divergence, as well as their credible intervals, are heavily influenced by the relaxed molecular clock models and methods used, and by the nature and treatment of fossil calibrations. Whereas the estimated age of LECA varied widely, ranging from 1007 (943-1102) Ma to 1898 (1655-2094) Ma, all analyses suggested that the eukaryotic supergroups subsequently diverged rapidly (i.e., within 300 Ma of LECA). The extreme variability of these and previously published analyses preclude definitive conclusions regarding the age of major eukaryote clades at this time. As more reliable fossil data on eukaryotes from the Proterozoic become available and improvements are made in relaxed molecular clock modeling, we may be able to date the age of extant eukaryotes more precisely.


Proceedings of the Royal Society of London B: Biological Sciences | 2013

Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads

Matthew W. Brown; Susan C. Sharpe; Jeffrey D. Silberman; Aaron A. Heiss; B. Franz Lang; Alastair G. B. Simpson; Andrew J. Roger

Most eukaryotic lineages belong to one of a few major groups. However, several protistan lineages have not yet been robustly placed in any of these groups. Both the breviates and apusomonads are two such lineages that appear to be related to the Amoebozoa and Opisthokonta (i.e. the ‘unikonts’ or Amorphea); however, their precise phylogenetic positions remain unclear. Here, we describe a novel microaerophilic breviate, Pygsuia biforma gen. nov. sp. nov., isolated from a hypoxic estuarine sediment. Ultrastructurally, this species resembles the breviate genera Breviata and Subulatomonas but has two cell morphologies, adherent and swimming. Phylogenetic analyses of the small sub-unit rRNA gene show that Pygsuia is the sister to the other breviates. We constructed a 159-protein supermatrix, including orthologues identified in RNA-seq data from Pygsuia. Phylogenomic analyses of this dataset show that breviates, apusomonads and Opisthokonta form a strongly supported major eukaryotic grouping we name the Obazoa. Although some phylogenetic methods disagree, the balance of evidence suggests that the breviate lineage forms the deepest branch within Obazoa. We also found transcripts encoding a nearly complete integrin adhesome from Pygsuia, indicating that this protein complex involved in metazoan multicellularity may have evolved earlier in eukaryote evolution than previously thought.


Journal of Eukaryotic Microbiology | 2007

Amoeba at Attention: Phylogenetic Affinity of Sappinia pedata

Matthew W. Brown; Frederick W. Spiegel; Jeffrey D. Silberman

ABSTRACT. The genus Sappinia, a taxon of free‐living amoebae with trophozoites that typically have two closely appressed nuclei, contains two named species, Sappinia pedata, the type species, and S. diploidea. The amoebae of both species are essentially identical according to the literature. The two species are distinguished by S. pedata having a standing amoeba stage, incorrectly interpreted as a cyst, and S. diploidea having sessile, bicellular cysts. Using four isolates of S. pedata collected from around the world, we present detailed light micrographic illustrations of all stages of its life cycle. We confirm that the standing amoeba lacks a cell wall. In two isolates of S. pedata, there are bicellular cysts indistinguishable from those of S. diploidea. Using sequence data from the nuclear small subunit ribosomal RNA gene, we conclude that S. pedata and the published neotype of S. diploidea are congeneric but not conspecific. The genus branches within Thecamoebidae. Sequencing of the actin gene confirms the inclusion of Sappinia in Thecamoebidae. Resolving the taxonomy of Sappinia is gaining importance because it has recently been attributed as an opportunistic human pathogen.


Molecular Biology and Evolution | 2014

Earliest Holozoan Expansion of Phosphotyrosine Signaling

Hiroshi Suga; Guifré Torruella; Gertraud Burger; Matthew W. Brown; Iñaki Ruiz-Trillo

Phosphotyrosine (pTyr) signaling is involved in development and maintenance of metazoans’ multicellular body through cell-to-cell communication. Tyrosine kinases (TKs), tyrosine phosphatases, and other proteins relaying the signal compose the cascade. Domain architectures of the pTyr signaling proteins are diverse in metazoans, reflecting their complex intercellular communication. Previous studies had shown that the metazoan-type TKs, as well as other pTyr signaling proteins, were already diversified in the common ancestor of metazoans, choanoflagellates, and filastereans (which are together included in the clade Holozoa) whereas they are absent in fungi and other nonholozoan lineages. However, the earliest-branching holozoans Ichthyosporea and Corallochytrea, as well as the two fungi-related amoebae Fonticula and Nuclearia, have not been studied. Here, we analyze the complete genome sequences of two ichthyosporeans and Fonticula, and RNAseq data of three additional ichthyosporeans, one corallochytrean, and Nuclearia. Both the ichthyosporean and corallochytrean genomes encode a large variety of receptor TKs (RTKs) and cytoplasmic TKs (CTKs), as well as other pTyr signaling components showing highly complex domain architectures. However, Nuclearia and Fonticula have no TK, and show much less diversity in other pTyr signaling components. The CTK repertoires of both Ichthyosporea and Corallochytrea are similar to those of Metazoa, Choanoflagellida, and Filasterea, but the RTK sets are totally different from each other. The complex pTyr signaling equipped with positive/negative feedback mechanism likely emerged already at an early stage of holozoan evolution, yet keeping a high evolutionary plasticity in extracellular signal reception until the co-option of the system for cell-to-cell communication in metazoans.


Protist | 2013

Amoeba Stages in the Deepest Branching Heteroloboseans, Including Pharyngomonas: Evolutionary and Systematic Implications

Tommy Harding; Matthew W. Brown; Andrey Plotnikov; Elena Selivanova; Jong Soo Park; John H. Gunderson; Manuela Baumgartner; Jeffrey D. Silberman; Andrew J. Roger; Alastair G. B. Simpson

The taxon Heterolobosea (Excavata) is a major group of protists well known for its diversity of life stages. Most are amoebae capable of transforming into flagellates (amoeboflagellates), while others are known solely as flagellates or solely as amoebae. The deepest-branching heterolobosean taxon confirmed previously, Pharyngomonas, was generally assumed to be a pure flagellate, suggesting that the amoeba form arose later in the evolution of Heterolobosea sensu lato. Here we report that multiple isolates of Pharyngomonas are actually amoeboflagellates that also have cyst stages, with only amoebae transforming into cysts. The amoeba form of Pharyngomonas showed heterolobosean characteristics (e. g. eruptive movement), but also possessed unusual morphological features like slow-flowing crenulated hyaline crescents with conical subpseudopodia, finger-like projections and branching posterior extensions. Furthermore, phylogenetic analyses of 18S ribosomal RNA gene sequences that included two undescribed species of amoebae showed that Pharyngomonas is not the only deep-branching heterolobosean to possess an amoeba stage. These results suggest that possession of an amoeba stage was ancestral for Heterolobosea, unifying this taxon as a group of species with amoeba stages in their lifecycle or derived from organisms with such stages.


Molecular Biology and Evolution | 2017

Between a Pod and a Hard Test: The Deep Evolution of Amoebae

Seungho Kang; Alexander K. Tice; Frederick W. Spiegel; Jeffrey D. Silberman; Tomáš Pánek; Ivan Čepička; Martin Kostka; Anush Kosakyan; Daniel Máximo Corrêa Alcântara; Andrew J. Roger; Lora L. Shadwick; Alexey V. Smirnov; Alexander Kudryavtsev; Daniel J. G. Lahr; Matthew W. Brown

Abstract Amoebozoa is the eukaryotic supergroup sister to Obazoa, the lineage that contains the animals and Fungi, as well as their protistan relatives, and the breviate and apusomonad flagellates. Amoebozoa is extraordinarily diverse, encompassing important model organisms and significant pathogens. Although amoebozoans are integral to global nutrient cycles and present in nearly all environments, they remain vastly understudied. We present a robust phylogeny of Amoebozoa based on broad representative set of taxa in a phylogenomic framework (325 genes). By sampling 61 taxa using culture-based and single-cell transcriptomics, our analyses show two major clades of Amoebozoa, Discosea, and Tevosa. This phylogeny refutes previous studies in major respects. Our results support the hypothesis that the last common ancestor of Amoebozoa was sexual and flagellated, it also may have had the ability to disperse propagules from a sporocarp-type fruiting body. Overall, the main macroevolutionary patterns in Amoebozoa appear to result from the parallel losses of homologous characters of a multiphase life cycle that included flagella, sex, and sporocarps rather than independent acquisition of convergent features.

Collaboration


Dive into the Matthew W. Brown's collaboration.

Top Co-Authors

Avatar

Andrew J. Roger

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander K. Tice

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Kolisko

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Seungho Kang

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge