Matthew W. Forbes
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew W. Forbes.
Journal of the American Chemical Society | 2009
Matthew W. Forbes; Rebecca A. Jockusch
The mechanism of fluorescence and fluorescence quenching of the green fluorescent protein (GFP) is not well-understood. To gain insight into the effect of the surrounding protein on the chromophore buried at its center, the intrinsic electronic absorption and deactivation pathways of a gaseous model chromophore, p-hydroxybenzylidene-2,3-dimethylimidazolone (HBDI) were investigated. No fluorescence from photoactivated gaseous HBDI(-) was detected in the range 480-1100 nm, in line with the ultrafast rate of internal conversion of HBDI(-) in solution. Two different gas-phase deactivation pathways were found: photofragmentation and electron photodetachment. Electronic action spectra for each deactivation pathway were constructed by monitoring the disappearance of HBDI(-) and appearance of product ions as a function of excitation wavelength. The action spectra measured for each pathway are distinct, with electron photodetachment being strongly favored at higher photon energies. The combined (total) gas-phase action spectrum has a band origin at 482.5 nm (23340 cm(-1)) and covers a broad spectral range, 390-510 nm. This extended gas-phase action spectrum exhibits vibronic activity that matches well with the results of previous cold condensed-phase experiments and high-level in vacuo computations, with features evident at +550, +1500, and +2800 cm(-1) with respect to the band origin.
Journal of the American Society for Mass Spectrometry | 2011
Matthew W. Forbes; Rebecca A. Jockusch
The gas-phase fluorescence excitation, emission and photodissociation characteristics of three xanthene dyes (rhodamine 575, rhodamine 590, and rhodamine 6G) have been investigated in a quadrupole ion trap mass spectrometer. Measured gas-phase excitation and dispersed emission spectra are compared with solution-phase spectra and computations. The excitation and emission maxima for all three protonated dyes lie at higher energy in the gas phase than in solution. The measured Stokes shifts are significantly smaller for the isolated gaseous ions than the solvated ions. Laser power-dependence measurements indicate that absorption of multiple photons is required for photodissociation. Redshifts and broadening of the dispersed fluorescence spectra at high excitation laser power provide evidence of gradual heating of the ion population, pointing to a mechanism of sequential multiple-photon activation through absorption/emission cycling. The relative brightness in the gas phase follows the order R575(1.00) < R590(1.15) < R6G(1.29). Fluorescence emission from several mass-selected product ions has been measured.
Analytical Chemistry | 2015
Shouming Zhou; Matthew W. Forbes; Jonathan P. D. Abbatt
A novel analytical method is presented whereby Direct Analysis in Real Time-Mass Spectrometry (DART-MS) is applied to the study of gas-surface heterogeneous reactions. To illustrate the capabilities of the approach, the kinetics of a well-studied reaction of surface-bound polycyclic aromatic hydrocarbons with ozone are presented. Specifically, using helium as the reagent gas and with the DART heater temperature of 500 °C, nanogram quantities of benzo[e]pyrene (BeP) deposited on the outside of glass melting point capillary tubes were analyzed in positive ion mode with a limit of detection of 40 pg. Using bis(2-ethylhexyl) sebacate as an internal standard, the kinetics of the ozone-BeP reaction were assessed by determining the surface-bound BeP decays, after oxidation in an off-line reaction cell. The reaction is demonstrated to follow the Langmuir-Hinshelwood mechanism, known to prevail for heterogeneous reactions of this type. In addition, a wide array of oxygenated, condensed-phase products has been observed. The present work demonstrates the capability of the DART-MS technique to investigate the heterogeneous chemistry taking place on a wide range of surfaces, such as those that form in both outdoor and indoor environments.
ChemBioChem | 2015
Ahmed M. Ali; Matthew W. Forbes; G. Andrew Woolley
DNA binding by bZIP‐type coiled‐coil proteins can be inhibited by dominant negative versions of the proteins in which the N‐terminal basic region is replaced by an acidic extension. Photocontrol of bZIP function can be achieved by introducing intramolecular azobenzene‐based crosslinkers into dominant negatives. We show that the largest degree of photocontrol is achieved when the crosslinker is introduced into the zipper region of the dominant negative between Cys residues placed at f sites in the heptad segment showing the highest intrinsic helical propensity. The overall affinity of the dominant negative can then be tuned by varying the length of the acidic extension.
Dalton Transactions | 2014
Peter E. Sues; Matthew W. Forbes; Alan J. Lough; Robert H. Morris
The phosphido complex RuCp*(PPh2CH=CHPPh2)(PPh2) (1) was exposed to a number of small molecules and was found to recognize and activate molecular oxygen in an unprecedented fashion: the ruthenium species split O2 in a ligand-based 4-electron reduction to produce an endo epoxide, as well as a phosphinito ligand. Based on XRD data, VT NMR studies, cyclooctene trapping studies, and crossover experiments it was determined that the reaction proceeded through an intramolecular mechanism in which initial oxidation of the phosphido ligand generated an end-on peroxo intermediate. This mechanism was also supported by computational studies and electrochemical experiments. In contrast, an analogue of 1, RuCp*(Ph2P(ortho-C6H4)PPh2)(PPh2) (3), reacted in an intermolecular fashion to generate two phosphinito ligands.
Journal of Physical Chemistry A | 2007
Matthew W. Forbes; Matthew F. Bush; Nick C. Polfer; Jos Oomens; Robert C. Dunbar; Evan R. Williams; Rebecca A. Jockusch
Journal of Physical Chemistry A | 2007
Matthew F. Bush; Matthew W. Forbes; Rebecca A. Jockusch; Jos Oomens; Nick C. Polfer; Richard J. Saykally; Evan R. Williams
Physical Chemistry Chemical Physics | 2010
Qunzhou Bian; Matthew W. Forbes; Francis Talbot; Rebecca A. Jockusch
International Journal of Mass Spectrometry | 2011
Matthew W. Forbes; Andrea M. Nagy; Rebecca A. Jockusch
Journal of the American Society for Mass Spectrometry | 2007
Matthew W. Forbes; Rebecca A. Jockusch; Alex B. Young; Alex G. Harrison