Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew W. Kelley is active.

Publication


Featured researches published by Matthew W. Kelley.


Cell | 2004

Vascular Development in the Retina and Inner Ear: Control by Norrin and Frizzled-4, a High-Affinity Ligand-Receptor Pair

Qiang Xu; Yanshu Wang; Alain Dabdoub; John Williams; Chad Woods; Matthew W. Kelley; Li Jiang; William Tasman; Kang Zhang; Jeremy Nathans

Incomplete retinal vascularization occurs in both Norrie disease and familial exudative vitreoretinopathy (FEVR). Norrin, the protein product of the Norrie disease gene, is a secreted protein of unknown biochemical function. One form of FEVR is caused by defects in Frizzled-4 (Fz4), a presumptive Wnt receptor. We show here that Norrin and Fz4 function as a ligand-receptor pair based on (1) the similarity in vascular phenotypes caused by Norrin and Fz4 mutations in humans and mice, (2) the specificity and high affinity of Norrin-Fz4 binding, (3) the high efficiency with which Norrin induces Fz4- and Lrp-dependent activation of the classical Wnt pathway, and (4) the signaling defects displayed by disease-associated variants of Norrin and Fz4. These data define a Norrin-Fz4 signaling system that plays a central role in vascular development in the eye and ear, and they indicate that ligands unrelated to Wnts can act through Fz receptors.


Nature | 2003

Identification of Vangl2 and Scrb1 as planar polarity genes in mammals

Mireille Montcouquiol; Rivka A. Rachel; Pamela J. Lanford; Neal G. Copeland; Nancy A. Jenkins; Matthew W. Kelley

In mammals, an example of planar cell polarity (PCP) is the uniform orientation of the hair cell stereociliary bundles within the cochlea. The PCP pathway of Drosophila refers to a conserved signalling pathway that regulates the coordinated orientation of cells or structures within the plane of an epithelium. Here we show that a mutation in Vangl2, a mammalian homologue of the Drosophila PCP gene Strabismus/Van Gogh, results in significant disruptions in the polarization of stereociliary bundles in mouse cochlea as a result of defects in the direction of movement and/or anchoring of the kinocilium within each hair cell. Similar, but less severe, defects are observed in animals containing a mutation in the LAP protein family gene Scrb1 (homologous with Drosophila scribble). Polarization defects in animals heterozygous for Vangl2 and Scrb1 are comparable with Vangl2 homozygotes, demonstrating genetic interactions between these genes in the regulation of PCP in mammals. These results demonstrate a role for the PCP pathway in planar polarization in mammals, and identify Scrb1 as a PCP gene.


Nature Genetics | 1999

Notch signalling pathway mediates hair cell development in mammalian cochlea

Pamela J. Lanford; Yu Lan; Rulang Jiang; Claire E. Lindsell; Gerry Weinmaster; Thomas Gridley; Matthew W. Kelley

The mammalian cochlea contains an invariant mosaic of sensory hair cells and non-sensory supporting cells reminiscent of invertebrate structures such as the compound eye in Drosophila melanogaster. The sensory epithelium in the mammalian cochlea (the organ of Corti) contains four rows of mechanosensory hair cells: a single row of inner hair cells and three rows of outer hair cells. Each hair cell is separated from the next by an interceding supporting cell, forming an invariant and alternating mosaic that extends the length of the cochlear duct. Previous results suggest that determination of cell fates in the cochlear mosaic occurs via inhibitory interactions between adjacent progenitor cells (lateral inhibition). Cells populating the cochlear epithelium appear to constitute a developmental equivalence group in which developing hair cells suppress differentiation in their immediate neighbours through lateral inhibition. These interactions may be mediated through the Notch signalling pathway, a molecular mechanism that is involved in the determination of a variety of cell fates. Here we show that genes encoding the receptor protein Notch1 and its ligand, Jagged 2, are expressed in alternating cell types in the developing sensory epithelium. In addition, genetic deletion of Jag2 results in a significant increase in sensory hair cells, presumably as a result of a decrease in Notch activation. These results provide direct evidence for Notch-mediated lateral inhibition in a mammalian system and support a role for Notch in the development of the cochlear mosaic.


Nature Neuroscience | 2004

Math1 regulates development of the sensory epithelium in the mammalian cochlea

Chad Woods; Mireille Montcouquiol; Matthew W. Kelley

The transcription factor Math1 (encoded by the gene Atoh1, also called Math1) is required for the formation of mechanosensory hair cells in the inner ear; however, its specific molecular role is unknown. Here we show that absence of Math1 in mice results in a complete disruption of formation of the sensory epithelium of the cochlea, including the development of both hair cells and associated supporting cells. In addition, ectopic expression of Math1 in nonsensory regions of the cochlea is sufficient to induce the formation of sensory clusters that contain both hair cells and supporting cells. The formation of these clusters is dependent on inhibitory interactions mediated, most probably, through the Notch pathway, and on inductive interactions that recruit cells to develop as supporting cells through a pathway independent of Math1. These results show that Math1 functions in the developing cochlea to initiate both inductive and inhibitory signals that regulate the overall formation of the sensory epithelia.


The Journal of Neuroscience | 2006

Asymmetric Localization of Vangl2 and Fz3 Indicate Novel Mechanisms for Planar Cell Polarity in Mammals

Mireille Montcouquiol; Nathalie Sans; David Huss; Jacob Kach; J. David Dickman; Andrew Forge; Rivka A. Rachel; Neal G. Copeland; Nancy A. Jenkins; Debora Bogani; Jennifer N. Murdoch; Mark E. Warchol; Robert J. Wenthold; Matthew W. Kelley

Planar cell polarity (PCP) is a process in which cells develop with uniform orientation within the plane of an epithelium. To begin to elucidate the mechanisms of PCP in vertebrates, the localization of the protein Vangl2 (Van Gogh-like) was determined during the development of the mammalian cochlea. Results indicate that Vangl2 becomes asymmetrically localized to specific cell–cell boundaries along the axis of polarization and that this asymmetry is lost in PCP mutants. In addition, PDZ2 (postsynaptic density/Discs large/zona occludens 1), PDZ3, and PDZ4 of the PCP protein Scrb1 (Scribble) are shown to bind to the C-terminal PDZ binding domain of Vangl2, suggesting that Scrb1 plays a direct role in asymmetric targeting of Vangl2. Finally, Fz3 (Frizzled), a newly demonstrated mediator of PCP, is also asymmetrically localized in a pattern that matches that of Vangl2. The presence and asymmetry of Fz3 at the membrane is shown to be dependent on Vangl2. This result suggests a role for Vangl2 in the targeting or anchoring of Fz3, a hypothesis strengthened by the existence of a physical interaction between the two proteins. Together, our data support the idea that protein asymmetry plays an important role in the development of PCP, but the colocalization and interaction of Fz3 and Vangl2 suggests that novel PCP mechanisms exist in vertebrates.


Nature Reviews Neuroscience | 2006

Regulation of cell fate in the sensory epithelia of the inner ear

Matthew W. Kelley

The sensory epithelia of the inner ear contain mechanosensory hair cells and non-sensory supporting cells. Both classes of cell are heterogeneous, with phenotypes varying both between and within epithelia. The specification of individual cells as distinct types of hair cell or supporting cell is regulated through intra- and extracellular signalling pathways that have been poorly understood. However, new methodologies have resulted in significant steps forward in our understanding of the molecular pathways that direct cells towards these cell fates.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea

Alain Dabdoub; Chandrakala Puligilla; Jennifer M. Jones; Bernd Fritzsch; Kathryn S. E. Cheah; Larysa Pevny; Matthew W. Kelley

Sox2 is a high-mobility transcription factor that is one of the earliest markers of developing inner ear prosensory domains. In humans, mutations in SOX2 cause sensorineural hearing loss and a loss of function study in mice showed that Sox2 is required for prosensory formation in the cochlea. However, the specific roles of Sox2 have not been determined. Here we illustrate a dynamic role of Sox2 as an early permissive factor in prosensory domain formation followed by a mutually antagonistic relationship with Atoh1, a bHLH protein necessary for hair cell development. We demonstrate that decreased levels of Sox2 result in precocious hair cell differentiation and an over production of inner hair cells and that these effects are likely mediated through an antagonistic interaction between Sox2 and the bHLH molecule Atoh1. Using gain- and loss-of-function experiments we provide evidence for the molecular pathway responsible for the formation of the cochlear prosensory domain. Sox2 expression is promoted by Notch signaling and Prox1, a homeobox transcription factor, is a downstream target of Sox2. These results demonstrate crucial and diverse roles for Sox2 in the development, specification, and maintenance of sensory cells within the cochlea.


Development | 2004

From placode to polarization: new tunes in inner ear development

Kate F. Barald; Matthew W. Kelley

The highly orchestrated processes that generate the vertebrate inner ear from the otic placode provide an excellent and circumscribed testing ground for fundamental cellular and molecular mechanisms of development. The recent pace of discovery in developmental auditory biology has been unusually rapid, with hundreds of papers published in the past 4 years. This review summarizes studies addressing several key issues that shape our current thinking about inner ear development, with particular emphasis on early patterning events, sensory hair cell specification and planar cell polarity.


Development | 2003

Wnt signaling mediates reorientation of outer hair cell stereociliary bundles in the mammalian cochlea.

Alain Dabdoub; Maura J. Donohue; Angela Brennan; Vladimir Wolf; Mireille Montcouquiol; David Sassoon; Jen-Chih Hseih; Jeffrey S. Rubin; Patricia C. Salinas; Matthew W. Kelley

In the mammalian cochlea, stereociliary bundles located on mechanosensory hair cells within the sensory epithelium are unidirectionally oriented. Development of this planar polarity is necessary for normal hearing as stereociliary bundles are only sensitive to vibrations in a single plane; however, the mechanisms governing their orientation are unknown. We report that Wnt signaling regulates the development of unidirectional stereociliary bundle orientation. In vitro application of Wnt7a protein or inhibitors of Wnt signaling, secreted Frizzled-related protein 1 or Wnt inhibitory factor 1, disrupts bundle orientation. Moreover, Wnt7a is expressed in a pattern consistent with a role in the polarization of the developing stereociliary bundles. We propose that Wnt signaling across the region of developing outer hair cells gives rise to planar polarity in the mammalian cochlea.


Jaro-journal of The Association for Research in Otolaryngology | 2000

Expression of Math1 and HES5 in the cochleae of wildtype and Jag2 mutant mice.

Pamela J. Lanford; Ranu Shailam; Christine R. Norton; Thomas Ridley; Matthew W. Kelley

The sensory epithelium within the mammalian cochlea (the organ of Corti) is a strictly ordered cellular array consisting of sensory hair cells and nonsensory supporting cells. Previous research has demonstrated that Notch-mediated lateral inhibition plays a key role in the determination of cell types within this array. Specifically, genetic deletion of the Notch ligand, Jagged2, results in a significant increase in the number of hair cells that develop within the sensory epithelium, presumably as a result of a decrease in Notch activation. In contrast, the downstream mediators and targets of the Notch pathway in the inner ear have not been determined but they may include genes encoding the proneural gene Math1 as well as the HES family of inhibitory bHLH proteins. To determine the potential roles of these genes in cochlear development, in situ hybridization for Math1 and HES5 was performed on the cochleae of wildtype vs. Jagged2 mutants (Jag2ΔDSL ). Results in wild-type cochleae show that expression of Math1 transcripts in the duct begins on E13 and ultimately becomes restricted to hair cells in the sensory epithelium. In contrast, expression of HES5 begins on E15 and becomes restricted to supporting cells in the epithelium. Results in Jag2 mutant cochleae suggest that Math1 transcripts are ultimately maintained in a larger number of cells as compared with wildtype, while transcripts for HES5 are dramatically reduced throughout the epithelium. These results are consistent with the hypothesis that activation of Notch via Jagged2 acts to inhibit expression of Math1 in cochlear progenitor cells, possibly through the activity of HES5.

Collaboration


Dive into the Matthew W. Kelley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chandrakala Puligilla

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Helen May-Simera

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Elizabeth C. Driver

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Thomas B. Friedman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Thomas M. Coate

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alain Dabdoub

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alain Dabdoub

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rivka A. Rachel

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge