Matthew W. Nowicki
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew W. Nowicki.
Crystallography Reviews | 2010
Marjorie M. Harding; Matthew W. Nowicki; Malcolm D. Walkinshaw
Metals are present in more than one-third of all proteins as they occur in nature, and are usually important in biological function or maintenance of the structure. Some are present as cations, directly associated with amino acid functional groups of the protein, others within small molecule cofactors associated with the protein. For the 10 metals commonly found as cations, Na, Mg, K, Ca, Mn, Fe, Co, Ni, Cu and Zn, a survey is given of occurrence, relative frequencies of both metal and donor atom or group type, and geometry of coordination. The survey is based on crystal structure information deposited in the Protein Data Bank (PDB) [Berman, H.; Henrick, K.; Nakamura, H.; Markley, J.L. The Worldwide Protein Data Bank (wwPDB): Ensuring a Single, Uniform Archive of PDB Data. Nucleic Acids Res. 2007, 35, D301–D303]. The precision and reliability of this information is assessed in detail. Illustrative examples are given for each metal, including, usually, details of the structure of the metal site in relation to the whole protein and to its function; there are comparisons between metals and descriptions of features such as binding to carboxylate and multiple metal sites close to each other. Metals found within cofactors which associate with the protein, most notably Mo, are included within these examples. Also included briefly are the prediction of metal sites in proteins resulting from genomic synthesis, information which can be derived from methods other than X-ray diffraction of crystals, and metal–protein systems which do not occur naturally.
Journal of Biological Chemistry | 2011
Hugh P. Morgan; Iain W. McNae; Matthew W. Nowicki; Wenhe Zhong; Paul A. M. Michels; Douglas S. Auld; Linda A. Fothergill-Gilmore; Malcolm D. Walkinshaw
Ehrlichs pioneering chemotherapeutic experiments published in 1904 (Ehrlich, P., and Shiga, K. (1904) Berlin Klin. Wochenschrift 20, 329–362) described the efficacy of a series of dye molecules including trypan blue and trypan red to eliminate trypanosome infections in mice. The molecular structures of the dyes provided a starting point for the synthesis of suramin, which was developed and used as a trypanocidal drug in 1916 and is still in clinical use. Despite the biological importance of these dye-like molecules, the mode of action on trypanosomes has remained elusive. Here we present crystal structures of suramin and three related dyes in complex with pyruvate kinases from Leishmania mexicana or from Trypanosoma cruzi. The phenyl sulfonate groups of all four molecules (suramin, Ponceau S, acid blue 80, and benzothiazole-2,5-disulfonic acid) bind in the position of ADP/ATP at the active sites of the pyruvate kinases (PYKs). The binding positions in the two different trypanosomatid PYKs are nearly identical. We show that suramin competitively inhibits PYKs from humans (muscle, tumor, and liver isoenzymes, Ki = 1.1–17 μm), T. cruzi (Ki = 108 μm), and L. mexicana (Ki = 116 μm), all of which have similar active sites. Synergistic effects were observed when examining suramin inhibition in the presence of an allosteric effector molecule, whereby IC50 values decreased up to 2-fold for both trypanosomatid and human PYKs. These kinetic and structural analyses provide insight into the promiscuous inhibition observed for suramin and into the mode of action of the dye-like molecules used in Ehrlichs original experiments.
Journal of Biological Chemistry | 2010
Hugh P. Morgan; Iain W. McNae; Matthew W. Nowicki; Véronique Hannaert; Paul A. M. Michels; Linda A. Fothergill-Gilmore; Malcolm D. Walkinshaw
Allosteric regulation provides a rate management system for enzymes involved in many cellular processes. Ligand-controlled regulation is easily recognizable, but the underlying molecular mechanisms have remained elusive. We have obtained the first complete series of allosteric structures, in all possible ligated states, for the tetrameric enzyme, pyruvate kinase, from Leishmania mexicana. The transition between inactive T-state and active R-state is accompanied by a simple symmetrical 6° rigid body rocking motion of the A- and C-domain cores in each of the four subunits. However, formation of the R-state in this way is only part of the mechanism; eight essential salt bridge locks that form across the C-C interface provide tetramer rigidity with a coupled 7-fold increase in rate. The results presented here illustrate how conformational changes coupled with effector binding correlate with loss of flexibility and increase in thermal stability providing a general mechanism for allosteric control.
Bioorganic & Medicinal Chemistry | 2008
Matthew W. Nowicki; Lindsay B. Tulloch; Liam Worralll; Iain W. McNae; Véronique Hannaert; Paul A. M. Michels; Linda A. Fothergill-Gilmore; Malcolm D. Walkinshaw; Nicholas J. Turner
The glycolytic pathway has been considered a potential drug target against the parasitic protozoan species of Trypanosoma and Leishmania. We report the design and the synthesis of inhibitors targeted against Trypanosoma brucei phosphofructokinase (PFK) and Leishmania mexicana pyruvate kinase (PyK). Stepwise library synthesis and inhibitor design from a rational starting point identified furanose sugar amino amides as a novel class of inhibitors for both enzymes with IC(50) values of 23microM and 26microM against PFK and PyK, respectively. Trypanocidal activity also showed potency in the low micromolar range and confirms these inhibitors as promising candidates for the development towards the design of anti-trypanosomal drugs.
PLOS Neglected Tropical Diseases | 2011
Roderick G. Walker; Graeme Thomson; Kirk J. Malone; Matthew W. Nowicki; Elaine Brown; David Blake; Nicholas J. Turner; Malcolm D. Walkinshaw; Karen M. Grant; Jeremy C. Mottram
Background Leishmania species are parasitic protozoa that have a tightly controlled cell cycle, regulated by cyclin-dependent kinases (CDKs). Cdc2-related kinase 3 (CRK3), an essential CDK in Leishmania and functional orthologue of human CDK1, can form an active protein kinase complex with Leishmania cyclins CYCA and CYC6. Here we describe the identification and synthesis of specific small molecule inhibitors of bacterially expressed Leishmania CRK3:CYC6 using a high throughput screening assay and iterative chemistry. We also describe the biological activity of the molecules against Leishmania parasites. Methodology/Principal Findings In order to obtain an active Leishmania CRK3:CYC6 protein kinase complex, we developed a co-expression and co-purification system for Leishmania CRK3 and CYC6 proteins. This active enzyme was used in a high throughput screening (HTS) platform, utilising an IMAP fluorescence polarisation assay. We carried out two chemical library screens and identified specific inhibitors of CRK3:CYC6 that were inactive against the human cyclin-dependent kinase CDK2:CycA. Subsequently, the best inhibitors were tested against 11 other mammalian protein kinases. Twelve of the most potent hits had an azapurine core with structure activity relationship (SAR) analysis identifying the functional groups on the 2 and 9 positions as essential for CRK3:CYC6 inhibition and specificity against CDK2:CycA. Iterative chemistry allowed synthesis of a number of azapurine derivatives with one, compound 17, demonstrating anti-parasitic activity against both promastigote and amastigote forms of L. major. Following the second HTS, 11 compounds with a thiazole core (active towards CRK3:CYC6 and inactive against CDK2:CycA) were tested. Ten of these hits demonstrated anti-parasitic activity against promastigote L. major. Conclusions/Significance The pharmacophores identified from the high throughput screens, and the derivatives synthesised, selectively target the parasite enzyme and represent compounds for future hit-to-lead synthesis programs to develop therapeutics against Leishmania species. Challenges remain in identifying specific CDK inhibitors with both target selectivity and potency against the parasite.
Bioorganic & Medicinal Chemistry Letters | 2011
Radek Jorda; Nina Sacerdoti-Sierra; Jiří Voller; Libor Havlíček; Kateřina Kráčalíková; Matthew W. Nowicki; Abedelmajeed Nasereddin; Vladimír Kryštof; Miroslav Strnad; Malcolm D. Walkinshaw; Charles L. Jaffe
We report here results of screening directed to finding new anti-leishmanial drugs among 2,6-disubstituted purines and corresponding 3,7-disubstituted pyrazolo[4,3-d]pyrimidines. These compounds have previously been shown to moderately inhibit human cyclin-dependent kinases. Since some compounds reduced viability of axenic amastigotes of Leishmania donovani, we screened them for interaction with recombinant leishmanial cdc-2 related protein kinase (CRK3/CYC6), an important cell cycle regulator of the parasitic protozoan. Eighteen pairs of corresponding isomers were tested for viability of amastigotes and for inhibition of CRK3/CYC6 kinase activity. Some compounds (9A, 12A and 13A) show activity against amastigotes with EC(50) in a range 1.5-12.4μM. Structure-activity relationships for the tested compounds are discussed and related to the lipophilicity of the compounds.
Journal of Molecular Biology | 2009
Matthew W. Nowicki; Buabarn Kuaprasert; Iain W. McNae; Hugh P. Morgan; Marjorie M. Harding; Paul A. M. Michels; Linda A. Fothergill-Gilmore; Malcolm D. Walkinshaw
The structures of Leishmania mexicana cofactor-independent phosphoglycerate mutase (Lm iPGAM) crystallised with the substrate 3-phosphoglycerate at high and low cobalt concentrations have been solved at 2.00- and 1.90-A resolutions. Both structures are very similar and the active site contains both 3-phosphoglycerate and 2-phosphoglycerate at equal occupancies (50%). Lm iPGAM co-crystallised with the product 2-phosphoglycerate yields the same structure. Two Co(2+) are coordinated within the active site with different geometries and affinities. The cobalt at the M1 site has a distorted octahedral geometry and is present at 100% occupancy. The M2-site Co(2+) binds with distorted tetrahedral geometry, with only partial occupancy, and coordinates with Ser75, the residue involved in phosphotransfer. When the M2 site is occupied, the side chain of Ser75 adopts a position that is unfavourable for catalysis, indicating that this site may not be occupied under physiological conditions and that catalysis may occur via a one-metal mechanism. The geometry of the M2 site suggests that it is possible for Ser75 to be activated for phosphotransfer by H-bonding to nearby residues rather than by metal coordination. The 16 active-site residues of Lm iPGAM are conserved in the Mn-dependent iPGAM from Bacillus stearothermophilus (33% overall sequence identity). However, Lm iPGAM has an inserted tyrosine (Tyr210) that causes the M2 site to diminish in size, consistent with its reduced metal affinity. Tyr210 is present in trypanosomatid and plant iPGAMs, but not in the enzymes from other organisms, indicating that there are two subclasses of iPGAMs.
Biochemical Journal | 2012
Hugh P. Morgan; Martin J. Walsh; Elizabeth A. Blackburn; Martin A. Wear; Matthew B. Boxer; Min Shen; Henrike Veith; Iain W. McNae; Matthew W. Nowicki; Paul A. M. Michels; Douglas S. Auld; Linda A. Fothergill-Gilmore; Malcolm D. Walkinshaw
PYK (pyruvate kinase) plays a central role in the metabolism of many organisms and cell types, but the elucidation of the details of its function in a systems biology context has been hampered by the lack of specific high-affinity small-molecule inhibitors. High-throughput screening has been used to identify a family of saccharin derivatives which inhibit LmPYK (Leishmania mexicana PYK) activity in a time- (and dose-) dependent manner, a characteristic of irreversible inhibition. The crystal structure of DBS {4-[(1,1-dioxo-1,2-benzothiazol-3-yl)sulfanyl]benzoic acid} complexed with LmPYK shows that the saccharin moiety reacts with an active-site lysine residue (Lys335), forming a covalent bond and sterically hindering the binding of ADP/ATP. Mutation of the lysine residue to an arginine residue eliminated the effect of the inhibitor molecule, providing confirmation of the proposed inhibitor mechanism. This lysine residue is conserved in the active sites of the four human PYK isoenzymes, which were also found to be irreversibly inhibited by DBS. X-ray structures of PYK isoforms show structural differences at the DBS-binding pocket, and this covalent inhibitor of PYK provides a chemical scaffold for the design of new families of potentially isoform-specific irreversible inhibitors.
Metallomics | 2011
Fazia Adyani Ahmad Fuad; Linda A. Fothergill-Gilmore; Matthew W. Nowicki; Lorna J. Eades; Hugh P. Morgan; Iain W. McNae; Paul A. M. Michels; Malcolm D. Walkinshaw
Production of ATP by the glycolytic pathway in the mammalian pathogenic stage of protists from the genus Trypanosoma is required for the survival of the parasites. Cofactor-independent phosphoglycerate mutase (iPGAM) is particularly attractive as a drug target because it shows no similarity to the corresponding enzyme in humans, and has also been genetically validated as a target by RNAi experiments. It has previously been shown that trypanosomatid iPGAMs require Co(2+) to reach maximal activity, but the biologically relevant metal has remained unclear. In this paper the metal content in the cytosol of procyclic and bloodstream-form T. brucei (analysed by inductively coupled plasma-optical emission spectroscopy) shows that Mg(2+), Zn(2+) and Fe(2+) were the most abundant, whereas Co(2+) was below the limit of detection (<0.035 μM). The low concentration indicates that Co(2+) is unlikely to be the biologically relevant metal, but that instead, Mg(2+) and/or Zn(2+) may assume this role. Results from metal analysis of purified Leishmania mexicana iPGAM by inductively coupled plasma-mass spectrometry also show high concentrations of Mg(2+) and Zn(2+), and are consistent with this proposal. Our data suggest that in vivo cellular conditions lacking Co(2+) are unable to support the maximal activity of iPGAM, but instead maintain its activity at a relatively low level by using Mg(2+) and/or Zn(2+). The physiological significance of these observations is being pursued by structural, biochemical and biophysical studies.
Biochemical Journal | 2014
Wenhe Zhong; Hugh P. Morgan; Matthew W. Nowicki; Iain W. McNae; Meng Yuan; Juraj Bella; Paul A. M. Michels; Linda A. Fothergill-Gilmore; Malcolm D. Walkinshaw
The phosphotransfer mechanism of PYKs (pyruvate kinases) has been studied in detail, but the mechanism of the intrinsic decarboxylase reaction catalysed by PYKs is still unknown. 1H NMR was used in the present study to follow OAA (oxaloacetate) decarboxylation by trypanosomatid and human PYKs confirming that the decarboxylase activity is conserved across distantly related species. Crystal structures of TbPYK (Trypanosoma brucei PYK) complexed with the product of the decarboxylase reaction (pyruvate), and a series of substrate analogues (D-malate, 2-oxoglutarate and oxalate) show that the OAA analogues bind to the kinase active site with similar binding modes, confirming that both decarboxylase and kinase activities share a common site for substrate binding and catalysis. Decarboxylation of OAA as monitored by NMR for TbPYK has a relatively low turnover with values of 0.86 s-1 and 1.47 s-1 in the absence and presence of F26BP (fructose 2,6-bisphosphate) respectively. Human M1PYK (M1 isoform of PYK) has a measured turnover value of 0.50 s-1. The X-ray structures explain why the decarboxylation activity is specific for OAA and is not general for α-oxo acid analogues. Conservation of the decarboxylase reaction across divergent species is a consequence of piggybacking on the conserved kinase mechanism which requires a stabilized enol intermediate.