Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew W. Turnbull is active.

Publication


Featured researches published by Matthew W. Turnbull.


Current Biology | 2005

Functional gap junction genes are encoded by insect viruses

Matthew W. Turnbull; Anne-Nathalie Volkoff; Bruce A. Webb; Pauline Phelan

Ichnoviruses belong to the virus family Polydnaviridae, whose members are obligately associated with certain endoparasitoid wasps. Expression of ichnovirus genes in parasitized lepidopteran hosts leads to immune suppression and is essential for successful parasitization. To date, the role of specific ichnovirus genes in alteration of host physiology has been unclear, and no cellular homologues have been described. Here, we describe the isolation of a gene family from two ichnoviruses that is homologous to the innexin gene family, which encodes gap junctions in invertebrates. Campoletis sonorensis ichnovirus (CsIV) innexins are expressed in multiple tissues in infected lepidopterans, including haemocytes, the primary immunocytes of the host. Two of the CsIV proteins have been expressed and shown to form functional gap junctions in Xenopus oocytes. To our knowledge this is the first study to describe gap junction genes in any virus. We hypothesize that the virus innexins disrupt cellular immunity in infected insects by altering normal gap junctional intercellular communication. This would represent a novel mechanism of viral alteration of host physiology, and suggests that gap junctions play a crucial role in coordinating cellular immune responses.


Immunogenetics | 2003

Diversifying selection in a parasitoid's symbiotic virus among genes involved in inhibiting host immunity.

Stéphane Dupas; Matthew W. Turnbull; Bruce A. Webb

During parasitization of their hosts some insect parasitoids deliver resident viruses which encode genes that must be expressed in the host for successful parasitization. Among these viruses the Campoletis sonorensis Ichnovirus has been well studied and encodes a cys-motif gene family implicated in disruption of host immunity and other physiological systems. Members of this gene family encode one or more intercystine-knot structural motifs in which the non-cysteine residues of the motif are variable. We analyzed patterns of synonymous and non-synonymous substitution within the cys-motif to investigate the evolution of this gene family and the likelihood of virus-host gene coevolution. Maximum likelihood techniques suggest positive selection acts on 8 of 51 codons in the aligned cysteine-rich region. Although the detected positive selection was not strong, it likely contributes to the diversification of this gene family. Comparison of selection pressure relative to tertiary structure of the VHv1.1 cys-motif protein suggests that the hypervariable sites are exposed. Furthermore, invariant residues in the motif exhibit a region-specific pattern of codon bias, suggesting there are unusual mechanisms of effecting selection pressure at work in this system, though the mechanism has yet to be studied. The positive selection and duplication of both the gene family and the cys-motif implies either selection is driving the molecular radiation of immune suppressive genes toward novel hosts, or molecular coevolution with host targets.


Journal of Insect Science | 2011

Characterization of nonjunctional hemichannels in caterpillar cells

Kaijun Luo; Matthew W. Turnbull

Abstract Recent studies have demonstrated that hemichannels, which form gap junctions when paired from apposing cells, may serve additional roles when unpaired including cell adhesion and paracrine communication. Hemichannels in mammals are formed by connexins or pannexins, while in insects they are formed by pannexin homologues termed innexins. The formation of functional gap junctions by insect innexins has been established, although their ability to form functional nonjunctional hemichannels has not been reported. Here the characteristics of nonjunctional hemichannels were examined in three lepidopteran cell types, two cell lines (High Five and Sf9) and explanted hemocytes from Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae). Selective fluorescent dye uptake by hemichannels was observed in a significant minority of cells, using fluorescence microscopy and flow cytometry. Carbenoxelone, an inhibitor of mammalian junctions, disrupted dye uptake, while flufenamic acid and mefloquine did not. The presence of Ca2+ and Mg2+ in the media increased hemichannel activity. Additionally, lipopolysaccharide, a stimulator of immune activity in lepidopterans, decreased dye uptake. These results demonstrate for the first time the activity of nonjunctional hemichannels in insect cells, as well as pharmacological tools to manipulate them. These results will facilitate the further examination of the role of innexins and nonjunctional hemichannels in insect cell biology, including paracrine signaling, and comparative studies of mammalian pannexins and insect innexins.


FEMS Microbiology Ecology | 2011

Larval exposure to Francisella tularensisLVS affects fitness of the mosquito Culex quinquefasciatus

Uma Vikas Mahajan; Jonathan Gravgaard; Matthew W. Turnbull; David B. Jacobs

Francisella tularensis is an environmental bacterium capable of infecting a wide spectrum of species from mammals and birds to reptiles. It has been demonstrated that F. tularensis can invade and survive within protozoa, but an association with aquatic insects has not been thoroughly investigated. We examined the interaction of F. tularensis LVS biofilms and Culex quinquefasciatus larvae to determine the effects on larvae and adults. Our results demonstrate that F. tularensis LVS can form and persist as biofilms in natural water and that the mosquito larvae of C. quinquefasciatus readily feed on biofilm and planktonic forms of F. tularensis LVS. Larvae raised in both bacteria-only cultures suffered significant delays in pupation. Adults resulting from larvae continuously exposed to the bacteria had significantly reduced wing lengths in males and fecundity of both sexes. The bacteria may be exerting these effects through localization and persistence within the midgut and Malpighian tubule cells of the larvae. The study of oral acquisition of pathogens by insect larvae can significantly contribute to the study of environmental persistence of pathogens. We show that oral uptake of F. tularensis LVS by C. quinquefasciatus larvae results in not only larval effects but also has effects on adult mosquitoes. These effects are important in understanding both the ecology of tularemia as well as bacterial interactions with aquatic invertebrates.


Journal of Virology | 2011

Functional Interactions between Polydnavirus and Host Cellular Innexins

Nerissa K Marziano; Daniel K. Hasegawa; Pauline Phelan; Matthew W. Turnbull

ABSTRACT Polydnaviruses are double-stranded DNA viruses associated with some subfamilies of ichneumonoid parasitoid wasps. Polydnavirus virions are delivered during wasp parasitization of a host, and virus gene expression in the host induces alterations of host physiology. Infection of susceptible host caterpillars by the polydnavirus Campoletis sonorensis ichnovirus (CsIV) leads to expression of virus genes, resulting in immune and developmental disruptions. CsIV carries four homologues of insect gap junction genes (innexins) termed vinnexins, which are expressed in multiple tissues of infected caterpillars. Previously, we demonstrated that two of these, VinnexinD and VinnexinG, form functional gap junctions in paired Xenopus oocytes. Here we show that VinnexinQ1 and VinnexinQ2, likewise, form junctions in this heterologous system. Moreover, we demonstrate that the vinnexins interact differentially with the Innexin2 orthologue of an ichnovirus host, Spodoptera frugiperda. Cell pairs coexpressing a vinnexin and Innexin2 or pairs in which one cell expresses a vinnexin and the neighboring cell Innexin2 assemble functional junctions with properties that differ from those of junctions composed of Innexin2 alone. These data suggest that altered gap junctional intercellular communication may underlie certain cellular pathologies associated with ichnovirus infection of caterpillar hosts.


FEBS Letters | 2014

Recent findings in evolution and function of insect innexins

Daniel K. Hasegawa; Matthew W. Turnbull

The past decade has seen significant advances in the field of innexin biology, particularly in the model invertebrate organisms, the nematode Caenorhabditis elegans and the fly Drosophila melanogaster. However, advances in genomics and functional techniques during this same period are ushering in a period of comparative innexin biology. Insects are the most diverse metazoan taxa in terms of species number, as well as in developmental, physiological, and morphological processes. Combined with genomics data, the study of innexins should rapidly advance. In this review, we consider the current state of knowledge regarding innexins in insects, focusing on innexin diversity, both evolutionary and functional. We also consider an unusual set of innexins, known as vinnexins, that have been isolated from mutualistic viruses of some parasitoid wasps. We conclude with a call to study insect innexins from a broader, evolutionary perspective. Knowledge derived from such comparative studies will offer significant insight into developmental and evolutionary physiology, as well as specific functional processes in a taxon that has huge biomedical and ecological impact on humans.


Florida Entomologist | 2010

A Novel Technique for Feeding and Confirming Uptake of Bacteria in Larvae of the Southern House Mosquito, Culex quinquefasciatus (Diptera: Culicidae)

Jonathan C. Geavgaard; Matthew W. Turnbull

ABSTRACT Aquatic macroinvertebrates play important roles in freshwater ecosystems. The larvae of the vector mosquito Culex quinquefasciatus Say (Diptera: Culicidae) primarily reside in standing water rich in organic matter; these conditions are also suited for growth of microbial biofilms. As microbes serve as a food source for larvae, the study of interactions between microbial biofilms and C. quinquefasciatus can aid in understanding the routes by which aquatic larvae can acquire pathogens, and the role such larvae may play in environmental persistence of microorganisms. Studies in butterflies, nematodes, and ticks have described interactions with bacteria acquired by the oral route, including arthropods that play a role in dissemination of bacteria on beet plants. In pursuit of these goals, this manuscript describes a new protocol for investigating larval mosquito feeding on microbial biofilms. Fluorescent microscopy and GFP expressing bacterial strains were used to show larval acquisition and midgut localization of bacteria from both planktonic and biofilm sources. PCR testing for the GFP plasmid confirmed presence of the test strain in fed larvae. The results of microscopy and PCR assays demonstrate that Culex quinquefasciatus larvae will feed on microbial biofilms in a laboratory environment. The efficiency of studying microbial fate through common microscopic and molecular techniques, in combination with an easily maintained vector insect colony, means this approach can be used to investigate a multitude of research questions relating to microbial effects on larval physiology, fitness, and conditioning.


Journal of Insect Physiology | 2017

Virus Innexins induce alterations in insect cell and tissue function

Daniel K. Hasegawa; Stephanie L. Erickson; Bradley M. Hersh; Matthew W. Turnbull

Polydnaviruses are dsDNA viruses that induce immune and developmental alterations in their caterpillar hosts. Characterization of polydnavirus gene families and family members is necessary to understand mechanisms of pathology and evolution of these viruses, and may aid to elucidate the role of host homologues if present. For example, the polydnavirus vinnexin gene family encodes homologues of insect gap junction genes (innexins) that are expressed in host immune cells (hemocytes). While the roles of Innexin proteins and gap junctions in insect immunity are largely unclear, we previously demonstrated that Vinnexins form functional gap junctions and alter the junctional characteristics of a host Innexin when co-expressed in paired Xenopus oocytes. Here, we test the effect of ectopic vinnexin expression on host cell physiology using both a lepidopteran cell culture model and a dipteran whole organism model. Vinnexin expression in the cell culture system resulted in gene-specific alterations in cell morphology and a slight, but non-statistically significant, reduction in gap junction activity as measured by dye transfer, while ectopic expression of a lepidopteran innexin2 gene led to morphological alterations and increase in gap junction activity. Global ectopic expression in the model dipteran, Drosophila melanogaster, of one vinnexin (vinnexinG) or D. melanogaster innexin2 (Dm-inx2) resulted in embryonic lethality, while expression of the other vinnexin genes had no effect. Furthermore, ectopic expression of vinnexinG, but not other vinnexin genes or Dm-inx2, in D. melanogaster larval gut resulted in developmental arrest in the pupal stage. These data indicate the vinnexins likely have gene-specific roles in host manipulation. They also support the use of Drosophila in further analysis of the role of Vinnexins and other polydnavirus genes in modifying host physiological processes. Finally, our findings suggest the vinnexin genes may be useful to perturb and characterize the physiological functions of insect Innexins.


The Biological Bulletin | 2018

Embryonic Development in the Peppermint Shrimp, Lysmata boggessi (Caridea: Lysmatidae)

Andrés Romero-Carvajal; Matthew W. Turnbull; J. Antonio Baeza

There are a limited number of model species for decapod experimental embryology. To improve our understanding of developmental pattern evolution in the Decapoda, here we describe the early embryonic development of the caridean shrimp Lysmata boggessi, from immediately after fertilization to the hatching of the zoea larva, using fluorescence microscopy and whole-mount nuclear staining with 4′,6-diamidino-2-phenylindole. Lysmata boggessi follows the standard caridean pattern of early development, with early holoblastic cleavage that will later become superficial, to form a blastoderm. We found no evidence of stereotypical cleavage and the formation of blastomere interlocking bands, which suggests there is diversity in developmental patterns within the Caridea. Gastrulation starts 37 hours after fertilization, and the embryonized nauplius is formed 2 days later. Enlarged headlobes, early retinal differentiation, and delayed pereopod development are characteristics of the post-naupliar stages in this species. To facilitate comparative studies with other crustacean species, we propose a staging method based on our findings. Lysmata boggessi is a protandric simultaneous hermaphrodite that is relatively easy to breed in captivity and amenable to laboratory experimentation in studies of embryonic development.


Journal of General Virology | 2018

Virus innexin expression in insect cells disrupts cell membrane potential and pH

Peng Zhang; Matthew W. Turnbull

Certain parasitoid wasps are associated with Polydnaviruses, symbiotic viruses that encode virulence factors which are essential to successful parasitization by the wasp of a caterpillar host. Members of one group of Polydnaviruses, the Ichnoviruses, encode a multi-gene family known as Vinnexins. Vinnexins are homologues of insect gap junction genes, and form functional gap junctions that may affect host cell physiology. However, the role of Vinnexins in host pathology and the mechanism by which these affect their caterpillar host are largely unknown. In this article, we generated recombinant baculoviruses to express vinnexins in Spodoptera frugiperda (Sf9) cells. To measure cell physiological changes caused by Vinnexins, cells were probed with a membrane potential-sensitive probe, DiBac4(3), and a pH indicator, carboxyfluorescein diacetate (CFDA). In addition, we utilized carbenoxolone and ouabain, respectively, to probe the role of gap junctions and hemi-channels, and Na+/K+-ATPase in establishing membrane potential in studied cells. Our results indicate that Vinnexins induce cell membrane depolarization and cytoplasmic alkalization to a degree specific to each tested Vinnexin, and that neither Vinnexin hemi-channels nor Na+/K+-ATPase appear to underlie these effects directly. These results hint that members of the Vinnexin protein family may affect host bio-electrical phenomena to disrupt host cell physiology, and that the individual proteins of the family may differentially affect host physiology.

Collaboration


Dive into the Matthew W. Turnbull's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge