Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias Albrecht is active.

Publication


Featured researches published by Matthias Albrecht.


Current Biology | 2012

Specialization of mutualistic interaction networks decreases toward tropical latitudes.

Matthias Schleuning; Jochen Fründ; Alexandra-Maria Klein; Stefan Abrahamczyk; Ruben Alarcón; Matthias Albrecht; Georg K.S. Andersson; Simone Bazarian; Katrin Böhning-Gaese; Riccardo Bommarco; Bo Dalsgaard; D. Matthias Dehling; Ariella Gotlieb; Melanie Hagen; Thomas Hickler; Andrea Holzschuh; Christopher N. Kaiser-Bunbury; Holger Kreft; Rebecca J. Morris; Brody Sandel; William J. Sutherland; Jens-Christian Svenning; Teja Tscharntke; Stella Watts; Christiane N. Weiner; Michael Werner; Neal M. Williams; Camilla Winqvist; Carsten F. Dormann; Nico Blüthgen

Species-rich tropical communities are expected to be more specialized than their temperate counterparts. Several studies have reported increasing biotic specialization toward the tropics, whereas others have not found latitudinal trends once accounting for sampling bias or differences in plant diversity. Thus, the direction of the latitudinal specialization gradient remains contentious. With an unprecedented global data set, we investigated how biotic specialization between plants and animal pollinators or seed dispersers is associated with latitude, past and contemporary climate, and plant diversity. We show that in contrast to expectation, biotic specialization of mutualistic networks is significantly lower at tropical than at temperate latitudes. Specialization was more closely related to contemporary climate than to past climate stability, suggesting that current conditions have a stronger effect on biotic specialization than historical community stability. Biotic specialization decreased with increasing local and regional plant diversity. This suggests that high specialization of mutualistic interactions is a response of pollinators and seed dispersers to low plant diversity. This could explain why the latitudinal specialization gradient is reversed relative to the latitudinal diversity gradient. Low mutualistic network specialization in the tropics suggests higher tolerance against extinctions in tropical than in temperate communities.


Proceedings of the Royal Society of London B: Biological Sciences | 2012

Diverse pollinator communities enhance plant reproductive success

Matthias Albrecht; Bernhard Schmid; Yann Hautier; Christine B. Müller

Understanding the functional consequences of biodiversity loss is a major goal of ecology. Animal-mediated pollination is an essential ecosystem function and service provided to mankind. However, little is known how pollinator diversity could affect pollination services. Using a substitutive design, we experimentally manipulated functional group (FG) and species richness of pollinator communities to investigate their consequences on the reproductive success of an obligate out-crossing model plant species, Raphanus sativus. Both fruit and seed set increased with pollinator FG richness. Furthermore, seed set increased with species richness in pollinator communities composed of a single FG. However, in multiple-FG communities, highest species richness resulted in slightly reduced pollination services compared with intermediate species richness. Our analysis indicates that the presence of social bees, which showed roughly four times higher visitation rates than solitary bees or hoverflies, was an important factor contributing to the positive pollinator diversity–pollination service relationship, in particular, for fruit set. Visitation rate at different daytimes, and less so among flower heights, varied among social bees, solitary bees and hoverflies, indicating a niche complementarity among these pollinator groups. Our study demonstrates enhanced pollination services of diverse pollinator communities at the plant population level and suggests that both the niche complementarity and the presence of specific taxa in a pollinator community drive this positive relationship.


Proceedings of the Royal Society B: Biological Sciences; 282(1814) (2015) | 2015

High effectiveness of tailored flower strips in reducing pests and crop plant damage

Matthias Tschumi; Matthias Albrecht; Martin H. Entling; Katja Jacot

Providing key resources to animals may enhance both their biodiversity and the ecosystem services they provide. We examined the performance of annual flower strips targeted at the promotion of natural pest control in winter wheat. Flower strips were experimentally sown along 10 winter wheat fields across a gradient of landscape complexity (i.e. proportion non-crop area within 750 m around focal fields) and compared with 15 fields with wheat control strips. We found strong reductions in cereal leaf beetle (CLB) density (larvae: 40%; adults of the second generation: 53%) and plant damage caused by CLB (61%) in fields with flower strips compared with control fields. Natural enemies of CLB were strongly increased in flower strips and in part also in adjacent wheat fields. Flower strip effects on natural enemies, pests and crop damage were largely independent of landscape complexity (8–75% non-crop area). Our study demonstrates a high effectiveness of annual flower strips in promoting pest control, reducing CLB pest levels below the economic threshold. Hence, the studied flower strip offers a viable alternative to insecticides. This highlights the high potential of tailored agri-environment schemes to contribute to ecological intensification and may encourage more farmers to adopt such schemes.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2014

Consequences of plant invasions on compartmentalization and species' roles in plant -pollinator networks

Matthias Albrecht; Benigno Padrón; Ignasi Bartomeus; Anna Traveset

Compartmentalization—the organization of ecological interaction networks into subsets of species that do not interact with other subsets (true compartments) or interact more frequently among themselves than with other species (modules)—has been identified as a key property for the functioning, stability and evolution of ecological communities. Invasions by entomophilous invasive plants may profoundly alter the way interaction networks are compartmentalized. We analysed a comprehensive dataset of 40 paired plant–pollinator networks (invaded versus uninvaded) to test this hypothesis. We show that invasive plants have higher generalization levels with respect to their pollinators than natives. The consequences for network topology are that—rather than displacing native species from the network—plant invaders attracting pollinators into invaded modules tend to play new important topological roles (i.e. network hubs, module hubs and connectors) and cause role shifts in native species, creating larger modules that are more connected among each other. While the number of true compartments was lower in invaded compared with uninvaded networks, the effect of invasion on modularity was contingent on the study system. Interestingly, the generalization level of the invasive plants partially explains this pattern, with more generalized invaders contributing to a lower modularity. Our findings indicate that the altered interaction structure of invaded networks makes them more robust against simulated random secondary species extinctions, but more vulnerable when the typically highly connected invasive plants go extinct first. The consequences and pathways by which biological invasions alter the interaction structure of plant–pollinator communities highlighted in this study may have important dynamical and functional implications, for example, by influencing multi-species reciprocal selection regimes and coevolutionary processes.


PLOS ONE | 2009

Effective Long-Distance Pollen Dispersal in Centaurea jacea

Matthias Albrecht; Peter Duelli; Martin K. Obrist; David Kleijn; Bernhard Schmid

Background Agri-environment schemes play an increasingly important role for the conservation of rare plants in intensively managed agricultural landscapes. However, little is known about their effects on gene flow via pollen dispersal between populations of these species. Methodology/Principal Findings In a 2-year experiment, we observed effective pollen dispersal from source populations of Centaurea jacea in restored meadows, the most widespread Swiss agri-environment scheme, to potted plants in adjacent intensively managed meadows without other individuals of this species. Potted plants were put in replicated source populations at 25, 50, 100 m and where possible 200 m distance from these source populations. Pollen transfer among isolated plants was prevented by temporary bagging, such that only one isolated plant was accessible for flower visitors at any one time. Because C. jacea is self-incompatible, seed set in single-plant isolates indicated insect mediated effective pollen dispersal from the source population. Seed set was higher in source populations (35.7±4.4) than in isolates (4.8±1.0). Seed set declined from 18.9% of that in source populations at a distance of 25 m to 7.4% at 200 m. At a distance of 200 m seed set was still significantly higher in selfed plants, indicating long-distance effective pollen dispersal up to 200 m. Analyses of covariance suggested that bees contributed more than flies to this long-distance pollen dispersal. We found evidence that pollen dispersal to single-plant isolates was positively affected by the diversity and flower abundance of neighboring plant species in the intensively managed meadow. Furthermore, the decline of the dispersal was less steep when the source population of C. jacea was large. Conclusions We conclude that insect pollinators can effectively transfer pollen from source populations of C. jacea over at least 200 m, even when “recipient populations” consisted of single-plant isolates, suggesting that gene flow by pollen over this distance is very likely. Source population size and flowering environment surrounding recipient plants appear to be important factors affecting pollen dispersal in C. jacea. It is conceivable that most insect-pollinated plants in a network of restored sites within intensively managed grassland can form metapopulations, if distances between sites are of similar magnitude as tested here.


Journal of Applied Ecology | 2016

Tailored flower strips promote natural enemy biodiversity and pest control in potato crops

Matthias Tschumi; Matthias Albrecht; Jana Collatz; Viktor Dubsky; Martin H. Entling; Adriana J. Najar-Rodriguez; Katja Jacot

Sown flower strips are increasingly implemented within agri-environment schemes (AES) to increase functional biodiversity and ecosystem services such as pollination or natural pest control, but their effectiveness in achieving these goals remains poorly studied. We tested the performance of experimentally sown annual flower strips specifically designed to promote natural enemies of aphids and their pest control services (tailored flower strips) in adjacent potato crops (n = 8) compared with control fields (n = 10). Flower strips consisted of 11 plant species providing abundant floral and extra-floral resources. The abundance of key natural enemies of aphids (hoverflies, lacewings and ladybirds) and hoverfly species richness was greatly enhanced in tailored flower strips compared with potato control strips. This resulted in an average increase in the number of eggs deposited by hoverflies and lacewings by 127% and 48%, respectively, and a reduction in the number of aphids by 75% in adjacent potato crops. Synthesis and applications. We conclude that tailored flower strips can be an effective agri-environmental measure to enhance natural enemies and aphid control in nearby crops. Indeed, tailored flower strips may help to reduce insecticide input in potato production as they significantly decrease the probability that action thresholds are reached. Promoting natural enemy abundance and diversity, as observed for hoverflies, may increase the stability of pest control and provide additional benefits to agro-ecosystems in terms of natural enemy conservation. We thus recommend establishing tailored flower strips as a promising management option to reconcile the objectives of ecological intensification and biodiversity conservation.


Nature Communications | 2016

Ecological networks are more sensitive to plant than to animal extinction under climate change

Matthias Schleuning; Jochen Fründ; Oliver Schweiger; Erik Welk; Jörg Albrecht; Matthias Albrecht; Marion Beil; Gita Benadi; Nico Blüthgen; Helge Bruelheide; Katrin Böhning-Gaese; D. Matthias Dehling; Carsten F. Dormann; Nina Exeler; Nina Farwig; Alexander Harpke; Thomas Hickler; Anselm Kratochwil; Michael Kuhlmann; Ingolf Kühn; Denis Michez; Sonja Mudri-Stojnic; Michaela Plein; Pierre Rasmont; Angelika Schwabe; Josef Settele; Ante Vujić; Christiane N. Weiner; Martin Wiemers; Christian Hof

Impacts of climate change on individual species are increasingly well documented, but we lack understanding of how these effects propagate through ecological communities. Here we combine species distribution models with ecological network analyses to test potential impacts of climate change on >700 plant and animal species in pollination and seed-dispersal networks from central Europe. We discover that animal species that interact with a low diversity of plant species have narrow climatic niches and are most vulnerable to climate change. In contrast, biotic specialization of plants is not related to climatic niche breadth and vulnerability. A simulation model incorporating different scenarios of species coextinction and capacities for partner switches shows that projected plant extinctions under climate change are more likely to trigger animal coextinctions than vice versa. This result demonstrates that impacts of climate change on biodiversity can be amplified via extinction cascades from plants to animals in ecological networks.


Proceedings of the Royal Society B: Biological Sciences | 2016

Synergistic interactions of ecosystem services: florivorous pest control boosts crop yield increase through insect pollination

Louis Sutter; Matthias Albrecht

Insect pollination and pest control are pivotal functions sustaining global food production. However, they have mostly been studied in isolation and how they interactively shape crop yield remains largely unexplored. Using controlled field experiments, we found strong synergistic effects of insect pollination and simulated pest control on yield quantity and quality. Their joint effect increased yield by 23%, with synergistic effects contributing 10%, while their single contributions were 7% and 6%, respectively. The potential economic benefit for a farmer from the synergistic effects (12%) was 1.8 times greater than their individual contributions (7% each). We show that the principal underlying mechanism was a pronounced pest-induced reduction in flower lifetime, resulting in a strong reduction in the number of pollinator visits a flower receives during its lifetime. Our findings highlight the importance of non-additive interactions among ecosystem services (ES) when valuating, mapping or predicting them and reveal fundamental implications for ecosystem management and policy aimed at maximizing ES for sustainable agriculture.


Frontiers in Environmental Science | 2014

Habitat amount modulates the effect of patch isolation on host-parasitoid interactions

Valérie Coudrain; Christof Schüepp; Felix Herzog; Matthias Albrecht; Martin H. Entling

1. Habitat amount and patch isolation are important determinants of biodiversity and ecosystem functioning. We studied the separate and interactive effects of these two components of habitat fragmentation on host-parasitoid interactions in a replicated landscape-scale study. 2. We used trap-nesting solitary bees, wasps and their natural enemies as study system. We exposed trap nests in 30 tree patches in agricultural landscapes in northern Switzerland. Study sites were either (i) adjacent to forest (adjacent), (ii) distant from forest but connected through woody elements (connected) or (iii) distant from forest with no connecting woody elements (isolated). Independent of the three levels of isolation, the amount of woody habitat in the landscapes covered a gradient from 4 to 74%. 3. Host and parasitoid species richness increased with the amount of habitat in the landscape and was strongly reduced at isolated compared to adjacent and connected sites. Loss of host species richness was 21% at isolated compared to non-isolated sites, whereas parasitoid species richness decreased by 68%, indicating that the higher trophic level was more adversely affected by isolation. Most importantly, habitat amount and isolation had a pronounced interactive effect on parasitism: while isolation resulted in a strong decrease in parasitism in landscapes with low habitat amount, this effect was mitigated by high habitat amount. These interactive effects were consistent across the three years of the study. 4. The observed interplay between habitat amount and patch isolation may explain the often conflicting results in the habitat fragmentation literature and should be considered in future research on multitrophic communities and ecosystem functioning in fragmented landscapes.


Journal of Applied Ecology | 2017

Enhancing plant diversity in agricultural landscapes promotes both rare bees and dominant crop‐pollinating bees through complementary increase in key floral resources

Louis Sutter; Philippe Jeanneret; Agustín M. Bartual; Gionata Bocci; Matthias Albrecht

Summary Enhancing key floral resources is essential to effectively mitigate the loss of pollinator diversity and associated provisioning of pollination functions in agro-ecosystems. However, effective floral provisioning measures may diverge among different pollinator conservation targets, such as the conservation of rare species or the promotion of economically important crop pollinators. We examined to what extent such diverging conservation goals could be reconciled. We analysed plant–bee visitation networks of 64 herbaceous semi-natural habitats representing a gradient of plant species richness to identify key resource plants of the three distinct conservation target groups: rare bees (of conservation concern), dominant wild crop-pollinating bees and managed crop-pollinating bees (i.e. honeybees). Considering overall flower visitation, rare bees tended to visit nested subsets of plant species that were also visited by crop pollinators (46% and 77% nestedness in the dissimilarity between rare bees and wild crop pollinators or managed honeybees respectively). However, the set of preferred plant species, henceforth ‘key plant species’ (i.e. those species disproportionately more visited than expected according to their floral abundance) was considerably more distinct and less nested among bee target groups. Flower visits of all bee target groups increased with plant species richness at a similar rate. Importantly, our analyses revealed that an exponential increase in the flower abundance of the identified key plant species and complementarity in the bee visitation pattern across plant species ─ rather than total flower abundance ─ were the major drivers of these relationships. Synthesis and applications. We conclude that the multiple goals of preserving high bee diversity, conserving rare species and sustaining crop pollinators can be reconciled if key plant species of different target groups are simultaneously available. This availability is facilitated by a high floral resource complementarity in the plant community. The list of identified key resource plant species we provide here can help practitioners such as land managers and conservationists to better design and evaluate pollinator conservation and restoration measures according to their goals. Our findings highlight the importance of identifying and promoting such plant species for pollinator conservation in agricultural landscapes.

Collaboration


Dive into the Matthias Albrecht's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin H. Entling

University of Koblenz and Landau

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthias Tschumi

University of Koblenz and Landau

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Traveset

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sonja C. Pfister

University of Koblenz and Landau

View shared research outputs
Top Co-Authors

Avatar

Jens Schirmel

University of Koblenz and Landau

View shared research outputs
Researchain Logo
Decentralizing Knowledge