Matthias Alfeld
University of Antwerp
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthias Alfeld.
Journal of Analytical Atomic Spectrometry | 2013
Matthias Alfeld; Joana Vaz Pedroso; Margriet van Eikema Hommes; Geert Van der Snickt; Gwen Tauber; Jorik Blaas; Michael Haschke; Klaus Erler; Joris Dik; Koen Janssens
Scanning macro-X-ray fluorescence analysis (MA-XRF) is rapidly being established as a technique for the investigation of historical paintings. The elemental distribution images acquired by this method allow for the visualization of hidden paint layers and thus provide insight into the artists creative process and the paintings conservation history. Due to the lack of a dedicated, commercially available instrument the application of the technique was limited to a few groups that constructed their own instruments. We present the first commercially available XRF scanner for paintings, consisting of an X-ray tube mounted with a Silicon-Drift (SD) detector on a motorized stage to be moved in front of a painting. The scanner is capable of imaging the distribution of the main constituents of surface and sub-surface paint layers in an area of 80 by 60 square centimeters with dwell times below 10 ms and a lateral resolution below 100 μm. The scanner features for a broad range of elements between Ti (Z = 22) and Mo (Z = 42) a count rate of more than 1000 counts per second (cps)/mass percent and detection limits of 100 ppm for measurements of 1 s duration. Next to a presentation of spectrometric figures of merit, the value of the technique is illustrated through a case study of a painting by Rembrandts student Govert Flinck (1615–1660).
Journal of Analytical Atomic Spectrometry | 2011
Matthias Alfeld; Koen Janssens; Joris Dik; Wout De Nolf; Geert Van der Snickt
Elemental distribution maps are of great interest in the study of historical paintings, as they allow to investigate the pigment use of the artist, to image changes made in the painting during or after its creation and in some cases to reveal discarded paintings that were later over painted. Yet a method that allows to record such maps of a broad range of elements in a fast, non-destructive and in situ manner is not yet commonly available; a dedicated mobile scanning XRF instrument might fill this gap. In this paper we present three self-built scanning macro-XRF instruments, each based on the experience gained with its precursor. These instruments are compared in terms of sensitivity and limits of detection, which includes a discussion of the use of polycapillary optics and pinhole collimators as beam defining devices. Furthermore, the imaging capabilities of the instruments are demonstrated in three exemplary cases: (parts of) historical paintings from the 15th to the 19th century are examined. These cases illustrate the value of element specific distribution maps in the study of historical paintings and allow in the case of Vincent van Goghs “Patch of Grass” a direct comparison between in situ and synchrotron based scanning macro-XRF.
Journal of Analytical Atomic Spectrometry | 2015
Matthias Alfeld; Koen Janssens
Technical progress in the fields of X-ray sources, optics and detectors is constantly enhancing the pace of data acquisition in XRF imaging. This enlarges the size of the hyperspectral datasets and the number of their sub-parts. This paper describes the challenges in processing large XRF datasets featuring several million pixels/spectra and the strategies developed to overcome them. During the investigation of historical paintings by scanning macro-XRF the main challenges are the correct identification of all spectral features in a dataset and its timely processing. For the identification of spectral features different approaches are discussed, i.e. the use of sum spectra, maximum pixel spectra and of χr2 maps. For the time-efficient, artefact-free evaluation of XRF imaging data, different software packages are evaluated and intercompared (AXIL, PyMCA, GeoPIXE and the in-house written datamuncher). The process of data evaluation is illustrated on a large dataset (3.4 MPixels) acquired during the investigation of a version of Caravaggios Supper at Emmaus (143 × 199.5 cm2). This 17th century painting is currently the largest object entirely scanned with macroscopic XRF.
Heritage Science | 2014
Stijn Legrand; Frederik Vanmeert; Geert Van der Snickt; Matthias Alfeld; Wout De Nolf; Joris Dik; Koen Janssens
The development of advanced methods for non-destructive selective imaging of painted works of art at the macroscopic level based on radiation in the X-ray and infrared range of the electromagnetic spectrum are concisely reviewed. Such methods allow to either record depth-selective, element-selective or species-selective images of entire paintings. Camera-based ‘full field’ methods (that record the image data in parallel) can be discerned next to scanning methods (that build up distributions in a sequential manner by scanning a beam of radiation over the surface of an artefact). Six methods are discussed: on the one hand, macroscopic X-ray fluorescence and X-ray diffraction imaging and X-ray laminography and on the other hand macroscopic Mid and Near Infrared hyper- and full spectral imaging and Optical Coherence Tomography. These methods can be considered to be improved versions of the well-established imaging methods employed worldwide for examination of paintings, i.e., X-ray radiography and Infrared reflectography. Possibilities and limitations of these new imaging techniques are outlined.
Reviews in Analytical Chemistry | 2013
Koen Janssens; Matthias Alfeld; Geert Van der Snickt; Wout De Nolf; Frederik Vanmeert; Marie Radepont; Letizia Monico; Joris Dik; Marine Cotte; Gerald Falkenberg; Costanza Miliani; Brunetto Giovanni Brunetti
We review methods and recent studies in which macroscopic to (sub)microscopic X-ray beams were used for nondestructive analysis and characterization of pigments, paint microsamples, and/or entire paintings. We discuss the use of portable laboratory- and synchrotron-based instrumentation and describe several variants of X-ray fluorescence (XRF) analysis used for elemental analysis and imaging and combined with X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Macroscopic and microscopic (μ-)XRF variants of this method are suitable for visualizing the elemental distribution of key elements in paint multilayers. Technical innovations such as multielement, large-area XRF detectors have enabled such developments. The use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that take place during natural pigment alteration processes. However, synchrotron-based combinations of μ-XRF, μ-XAS, and μ-XRD are suitable for such studies.
Journal of Analytical Atomic Spectrometry | 2013
Matthias Alfeld; Wout De Nolf; Simone Cagno; Karen Appel; D. Peter Siddons; A. Kuczewski; Koen Janssens; Joris Dik; Karen Trentelman; Marc Walton; Andrea Sartorius
Over the past several decades the oeuvre of Rembrandt has been the subject of extensive art historical and scientific investigations. One of the most striking features to emerge is his frequent re-use of canvases and panels. The painting An Old Man in Military Costume (78.PB.246), in the collection of the J. Paul Getty Museum, is an example of such a re-used panel. Conventional imaging techniques revealed the presence of a second portrait under the surface portrait, but the details of this hidden portrait have not yet been revealed. Vermilion (HgS) has been identified to have been used nearly exclusively in the flesh tones of the lower painting, suggesting that element-specific XRF imaging might successfully image the hidden portrait. To test this hypothesis, a full-scale mock-up of the painting was created, including a “free impression” of the hidden portrait, reproducing as closely as possible the pigments and paint stratigraphy of the original painting. XRF imaging of the mock-up painting was conducted using three different XRF imaging systems: a mobile X-ray tube based system and two synchrotron-based setups (one equipped with multiple SDDs and one equipped with a Maia detector). The sensitivity, limits of detection and imaging capabilities of each system under the chosen experimental conditions are evaluated and compared. The results indicate that an investigation of the original painting by this method would have an excellent chance of success.
Journal of Analytical Atomic Spectrometry | 2015
Letizia Monico; Koen Janssens; Matthias Alfeld; Marine Cotte; Frederik Vanmeert; C.G. Ryan; Gerald Falkenberg; Daryl L. Howard; Brunetto Giovanni Brunetti; Costanza Miliani
A combination of synchrotron radiation (SR) micro X-ray fluorescence (μ-XRF) and XRF mode X-ray absorption near edge structure (XANES) measurements at the Cr K-edge already allowed us to establish that the photo-reduction of chromates to Cr(III) compounds is the cause of darkening of chrome yellow pigments (PbCr1−xSxO4, 0 ≤ x ≤ 0.8) in a number of paintings by Vincent van Gogh and in corresponding artificially aged paint models. A silicon drift detector (SDD) was employed to record the Cr-K XRF radiation in these X-ray micro beam-based measurements. However, in view of the limited count rate capabilities and collection solid angle of a single device, μ-XRF and μ-XANES employing single element SDDs (or similar) are primarily suited for collection of spectral data from individual points. Additionally, collection of XRF maps via point-by-point scanning with relatively long dwell times per point is possible but is usually confined to small areas. The development of the 384 silicon-diode array Maia XRF detector has provided valuable solutions in terms of data acquisition rate, allowing for full spectral (FS) XANES imaging in XRF mode, i.e., where spectroscopic information is available at each pixel in the scanned map. In this paper, the possibilities of SR Cr K-edge FS-XANES imaging in XRF mode using the Maia detector are examined as a new data collection strategy to study the speciation and distribution of alteration products of lead chromate-based pigments in painting materials. The results collected from two micro-samples taken from two Van Gogh paintings and an aged paint model show the possibility to perform FS-XANES imaging in practical time frames (from several minutes to a few hours) by scanning regions of sample sizes of the same order (more than 500 μm). The sensitivity and capabilities of FS-XANES imaging in providing representative chemical speciation information at the microscale (spatial resolution from ∼2 to 0.6 μm) over the entire scanned area are demonstrated by the identification of Cr(OH)3, Cr(III) sulfates and/or Cr(III) organometallic compounds in the corresponding phase maps, as alteration products. Comparable Cr-speciation results were obtained by performing equivalent higher spatial resolution SR μ-XRF/single-point μ-XANES analysis using a more conventional SDD from smaller regions of interest of each sample. Thus, large-area XRF mode FS-XANES imaging (Maia detector) is here proposed as a valuable and complementary data collection strategy in relation to “zoomed-in” high-resolution μ-XRF mapping and single-point μ-XANES analysis (SDD).
Journal of Experimental Botany | 2016
Seema Mishra; Matthias Alfeld; Roman Sobotka; Elisa Andresen; Gerald Falkenberg; Hendrik Küpper
Highlight At sublethal toxic concentrations, arsenic is predominantly localized in the nucleus but is already able to inhibit chlorophyll biosynthesis upstream of coproporphyrinogen III.
Analyst | 2014
Stijn Legrand; Matthias Alfeld; Frederik Vanmeert; Wout De Nolf; Koen Janssens
In this paper we demonstrate that by means of scanning reflection FTIR spectroscopy, it is possible to record highly specific distribution maps of organic and inorganic compounds from flat, macroscopic objects with cultural heritage value in a non-invasive manner. Our previous work involved the recording of macroscopic distributions of chemical elements or crystal phases from painted works of art based on respectively macroscopic X-ray fluorescence or X-ray powder diffraction analysis. The use of infrared radiation instead of X-rays has the advantage that more specific information about the nature and distribution of the chemical compounds present can be gathered. This higher imaging specificity represents a clear advantage for the characterization of painting and artist materials. It allows the distribution of metallo-organic compounds to be visualized and permits distinguishing between pigmented materials containing the same key metal. The prototype instrument allows the recording of hyperspectral datacubes by scanning the surface of the artefact in a contactless and sequential single-point measuring mode, while recording the spectrum of reflected infrared radiation. After the acquisition, spectral line intensities of individual bands and chemical distribution maps can be extracted from the datacube to identify the compounds present and/or to highlight their spatial distribution. Not only is information gained on the surface of the investigated artefacts, but also images of overpainted paint layers and, if present, the underdrawing may be revealed in this manner. A current major limitation is the long scanning times required to record these maps.
Analytical and Bioanalytical Chemistry | 2013
Roberto Terzano; Matthias Alfeld; Koen Janssens; Bart Vekemans; Tom Schoonjans; Laszlo Vincze; Nicola Tomasi; Roberto Pinton; Stefano Cesco
AbstractIron (Fe) is an essential element for plant growth and development; hence determining Fe distribution and concentration inside plant organs at the microscopic level is of great relevance to better understand its metabolism and bioavailability through the food chain. Among the available microanalytical techniques, synchrotron μ-XRF methods can provide a powerful and versatile array of analytical tools to study Fe distribution within plant samples. In the last years, the implementation of new algorithms and detection technologies has opened the way to more accurate (semi)quantitative analyses of complex matrices like plant materials. In this paper, for the first time the distribution of Fe within tomato roots has been imaged and quantified by means of confocal μ-XRF and exploiting a recently developed fundamental parameter-based algorithm. With this approach, Fe concentrations ranging from few hundreds of ppb to several hundreds of ppm can be determined at the microscopic level without cutting sections. Furthermore, Fe (semi)quantitative distribution maps were obtained for the first time by using two opposing detectors to collect simultaneously the XRF radiation emerging from both sides of an intact cucumber leaf. FigureElemental distribution maps within intact tomato roots as determined by confocal micro X‐ray fluorescence