Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias B. Hullin is active.

Publication


Featured researches published by Matthias B. Hullin.


ACM Transactions on Graphics | 2009

Acquisition and Analysis of Bispectral Bidirectional Reflectance Distribution Functions

Matthias B. Hullin; Boris Ajdin; Johannes Hanika; Hans-Peter Seidel; Jan Kautz; Hendrik P. A. Lensch

In fluorescent materials, light from a certain band of incident wavelengths is reradiated at longer wavelengths, i.e., with a reduced per-photon energy. While fluorescent materials are common in everyday life, they have received little attention in computer graphics. Especially, no bidirectional reradiation measurements of fluorescent materials have been available so far. In this paper, we extend the well-known concept of the bidirectional reflectance distribution function (BRDF) to account for energy transfer between wavelengths, resulting in a Bispectral Bidirectional Reflectance and Reradiation Distribution Function (bispectral BRRDF). Using a bidirectional and bispectral measurement setup, we acquire reflectance and reradiation data of a variety of fluorescent materials, including vehicle paints, paper and fabric, and compare their renderings with RGB, RGBxRGB, and spectral BRDFs. Our acquisition is guided by a principal component analysis on complete bispectral data taken under a sparse set of angles. We show that in order to faithfully reproduce the full bispectral information for all other angles, only a very small number of wavelength pairs needs to be measured at a high angular resolution.


international conference on computer graphics and interactive techniques | 2013

Low-budget transient imaging using photonic mixer devices

Felix Heide; Matthias B. Hullin; James Gregson; Wolfgang Heidrich

Transient imaging is an exciting a new imaging modality that can be used to understand light propagation in complex environments, and to capture and analyze scene properties such as the shape of hidden objects or the reflectance properties of surfaces. Unfortunately, research in transient imaging has so far been hindered by the high cost of the required instrumentation, as well as the fragility and difficulty to operate and calibrate devices such as femtosecond lasers and streak cameras. In this paper, we explore the use of photonic mixer devices (PMD), commonly used in inexpensive time-of-flight cameras, as alternative instrumentation for transient imaging. We obtain a sequence of differently modulated images with a PMD sensor, impose a model for local light/object interaction, and use an optimization procedure to infer transient images given the measurements and model. The resulting method produces transient images at a cost several orders of magnitude below existing methods, while simultaneously simplifying and speeding up the capture process.


international conference on computer graphics and interactive techniques | 2008

Fluorescent immersion range scanning

Matthias B. Hullin; Martin Fuchs; Ivo Ihrke; Hans-Peter Seidel; Hendrik P. A. Lensch

The quality of a 3D range scan should not depend on the surface properties of the object. Most active range scanning techniques, however, assume a diffuse reflector to allow for a robust detection of incident light patterns. In our approach we embed the object into a fluorescent liquid. By analyzing the light rays that become visible due to fluorescence rather than analyzing their reflections off the surface, we can detect the intersection points between the projected laser sheet and the object surface for a wide range of different materials. For transparent objects we can even directly depict a slice through the object in just one image by matching its refractive index to the one of the embedding liquid. This enables a direct sampling of the object geometry without the need for computational reconstruction. This way, a high-resolution 3D volume can be assembled simply by sweeping a laser plane through the object. We demonstrate the effectiveness of our light sheet range scanning approach on a set of objects manufactured from a variety of materials and material mixes, including dark, translucent and transparent objects.


ACM Transactions on Graphics | 2013

High-quality computational imaging through simple lenses

Felix Heide; Mushfiqur Rouf; Matthias B. Hullin; Björn Labitzke; Wolfgang Heidrich; Andreas Kolb

Modern imaging optics are highly complex systems consisting of up to two dozen individual optical elements. This complexity is required in order to compensate for the geometric and chromatic aberrations of a single lens, including geometric distortion, field curvature, wavelength-dependent blur, and color fringing. In this article, we propose a set of computational photography techniques that remove these artifacts, and thus allow for postcapture correction of images captured through uncompensated, simple optics which are lighter and significantly less expensive. Specifically, we estimate per-channel, spatially varying point spread functions, and perform nonblind deconvolution with a novel cross-channel term that is designed to specifically eliminate color fringing.


Optics Express | 2014

Imaging in scattering media using correlation image sensors and sparse convolutional coding

Felix Heide; Lei Xiao; Andreas Kolb; Matthias B. Hullin; Wolfgang Heidrich

Correlation image sensors have recently become popular low-cost devices for time-of-flight, or range cameras. They usually operate under the assumption of a single light path contributing to each pixel. We show that a more thorough analysis of the sensor data from correlation sensors can be used can be used to analyze the light transport in much more complex environments, including applications for imaging through scattering and turbid media. The key of our method is a new convolutional sparse coding approach for recovering transient (light-in-flight) images from correlation image sensors. This approach is enabled by an analysis of sparsity in complex transient images, and the derivation of a new physically-motivated model for transient images with drastically improved sparsity.


computer vision and pattern recognition | 2014

Diffuse Mirrors: 3D Reconstruction from Diffuse Indirect Illumination Using Inexpensive Time-of-Flight Sensors

Felix Heide; Lei Xiao; Wolfgang Heidrich; Matthias B. Hullin

The functional difference between a diffuse wall and a mirror is well understood: one scatters back into all directions, and the other one preserves the directionality of reflected light. The temporal structure of the light, however, is left intact by both: assuming simple surface reflection, photons that arrive first are reflected first. In this paper, we exploit this insight to recover objects outside the line of sight from second-order diffuse reflections, effectively turning walls into mirrors. We formulate the reconstruction task as a linear inverse problem on the transient response of a scene, which we acquire using an affordable setup consisting of a modulated light source and a time-of-flight image sensor. By exploiting sparsity in the reconstruction domain, we achieve resolutions in the order of a few centimeters for object shape (depth and laterally) and albedo. Our method is robust to ambient light and works for large room-sized scenes. It is drastically faster and less expensive than previous approaches using femtosecond lasers and streak cameras, and does not require any moving parts.


international conference on computer graphics and interactive techniques | 2012

Stochastic tomography and its applications in 3D imaging of mixing fluids

James Gregson; Michael Krimerman; Matthias B. Hullin; Wolfgang Heidrich

We present a novel approach for highly detailed 3D imaging of turbulent fluid mixing behaviors. The method is based on visible light computed tomography, and is made possible by a new stochastic tomographic reconstruction algorithm based on random walks. We show that this new stochastic algorithm is competitive with specialized tomography solvers such as SART, but can also easily include arbitrary convex regularizers that make it possible to obtain high-quality reconstructions with a very small number of views. Finally, we demonstrate that the same stochastic tomography approach can also be used to directly re-render arbitrary 2D projections without the need to ever store a 3D volume grid.


Computer Graphics Forum | 2011

Computer‐Suggested Facial Makeup

Kristina Scherbaum; Tobias Ritschel; Matthias B. Hullin; Thorsten Thormählen; Volker Blanz; Hans-Peter Seidel

Finding the best makeup for a given human face is an art in its own right. Experienced makeup artists train for years to be skilled enough to propose a best‐fit makeup for an individual. In this work we propose a system that automates this task. We acquired the appearance of 56 human faces, both without and with professional makeup. To this end, we use a controlled‐light setup, which allows to capture detailed facial appearance information, such as diffuse reflectance, normals, subsurface‐scattering, specularity, or glossiness. A 3D morphable face model is used to obtain 3D positional information and to register all faces into a common parameterization. We then define makeup to be the change of facial appearance and use the acquired database to find a mapping from the space of human facial appearance to makeup. Our main application is to use this mapping to suggest the best‐fit makeup for novel faces that are not in the database. Further applications are makeup transfer, automatic rating of makeup, makeup‐training, or makeup‐exaggeration. As our makeup representation captures a change in reflectance and scattering, it allows us to synthesize faces with makeup in novel 3D views and novel lighting with high realism. The effectiveness of our approach is further validated in a user‐study.


international conference on computer graphics and interactive techniques | 2010

Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions

Matthias B. Hullin; Johannes Hanika; Boris Ajdin; Hans-Peter Seidel; Jan Kautz; Hendrik P. A. Lensch

In fluorescent materials, light from a certain band of incident wavelengths is reradiated at longer wavelengths, i.e., with a reduced per-photon energy. While fluorescent materials are common in everyday life, they have received little attention in computer graphics. Especially, no bidirectional reradiation measurements of fluorescent materials have been available so far. In this paper, we extend the well-known concept of the bidirectional reflectance distribution function (BRDF) to account for energy transfer between wavelengths, resulting in a Bispectral Bidirectional Reflectance and Reradiation Distribution Function (bispectral BRRDF). Using a bidirectional and bispectral measurement setup, we acquire reflectance and reradiation data of a variety of fluorescent materials, including vehicle paints, paper and fabric, and compare their renderings with RGB, RGBxRGB, and spectral BRDFs. Our acquisition is guided by a principal component analysis on complete bispectral data taken under a sparse set of angles. We show that in order to faithfully reproduce the full bispectral information for all other angles, only a very small number of wavelength pairs needs to be measured at a high angular resolution.


international conference on computer graphics and interactive techniques | 2011

Physically-based real-time lens flare rendering

Matthias B. Hullin; Elmar Eisemann; Hans-Peter Seidel; Sungkil Lee

Lens flare is caused by light passing through a photographic lens system in an unintended way. Often considered a degrading artifact, it has become a crucial component for realistic imagery and an artistic means that can even lead to an increased perceived brightness. So far, only costly offline processes allowed for convincing simulations of the complex light interactions. In this paper, we present a novel method to interactively compute physically-plausible flare renderings for photographic lenses. The underlying model covers many components that are important for realism, such as imperfections, chromatic and geometric lens aberrations, and antireflective lens coatings. Various acceleration strategies allow for a performance/quality tradeoff, making our technique applicable both in real-time applications and in high-quality production rendering. We further outline artistic extensions to our system.

Collaboration


Dive into the Matthias B. Hullin's collaboration.

Top Co-Authors

Avatar

Wolfgang Heidrich

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge