Matthias B. Van Hiel
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthias B. Van Hiel.
BMC Molecular Biology | 2009
Matthias B. Van Hiel; Pieter Van Wielendaele; Liesbet Temmerman; Sofie Van Soest; Kristel Vuerinckx; Roger Huybrechts; Jozef Vanden Broeck; Gert Simonet
BackgroundTo obtain reliable quantitative RT-PCR data, normalization relative to stable housekeeping genes is required. However, in practice, expression levels of typical housekeeping genes have been found to vary between tissues and under different experimental conditions. To date, validation studies of reference genes in insects are extremely rare and have never been performed in locusts. In this study, putative housekeeping genes were identified in the desert locust, Schistocerca gregaria and two different software programs (geNorm and Normfinder) were applied to assess the stability of thesegenes.ResultsWe have identified seven orthologs of commonly used housekeeping genes in the desert locust. The selected genes were the orthologs of actin, EF1a, GAPDH, RP49, TubA1, Ubi, and CG13220. By employing real time RT-PCR we have analysed the expression of these housekeeping genes in brain tissue of fifth instar nymphs and adults. In the brain of fifth instar nymphs geNorm indicated Sg-EF1a, Sg-GAPDH and Sg-RP49 as most stable genes, while Normfinder ranked Sg-RP49, Sg-EF1a and Sg-ACT as most suitable candidates for normalization. The best normalization candidates for gene expression studies in the brains of adult locusts were Sg-EF1a, Sg-GAPDH and Sg-Ubi according to geNorm, while Normfinder determined Sg-GAPDH, Sg-Ubi and Sg-ACT as the most stable housekeeping genes.ConclusionTo perform transcript profiling studies on brains of the desert locust, the use of Sg-RP49, Sg-EF1a and Sg-ACT as reference genes is proposed for studies of fifth instar nymphs. In experiments with adult brains, however, the most preferred reference genes were Sg-GAPDH, Sg-Ubi and Sg-EF1a. These data will facilitate transcript profiling studies in desert locusts and provide a good starting point for the initial selection of genes for validation studies in other insects.
Peptides | 2010
Tom Van Loy; Hans Peter Vandersmissen; Jeroen Poels; Matthias B. Van Hiel; Heleen Verlinden; Jozef Vanden Broeck
Members of the tachykinin peptide family have been well conserved during evolution and are mainly expressed in the central nervous system and in the intestine of both vertebrates and invertebrates. In these animals, they act as multifunctional messengers that exert their biological effects by specifically interacting with a subfamily of structurally related G protein-coupled receptors. Despite the identification of multiple tachykinin-related peptides (TKRPs) in species belonging to the insects, crustaceans, mollusks and echiuroid worms, only five invertebrate receptors harboring profound sequence similarities to mammalian receptors for tachykinins have been functionally characterized to date. Three of these have been cloned from dipteran insect species, i.e. NKD (neurokinin receptor from Drosophila), DTKR (Drosophila tachykinin receptor) and STKR (tachykinin-related peptide receptor from the stable fly, Stomoxys calcitrans). In addition, two receptors from non-insect species, present in echiuroid worms and mollusks, respectively have been identified as well. In this brief review, we will survey some recent findings and insights into the signaling properties of invertebrate tachykinin-related peptides via their respective receptors. In this context, we will also point out the necessity to take into account differences in signaling mechanisms induced by distinct TKRP isoforms in insects.
Journal of Molecular Endocrinology | 2008
Liesbeth Badisco; Ilse Claeys; Matthias B. Van Hiel; Elke Clynen; Jurgen Huybrechts; Tim Vandersmissen; Sofie Van Soest; Luc Vanden Bosch; Gert Simonet; Jozef Vanden Broeck
Members of the insulin superfamily are not restricted to vertebrates, but have also been identified in invertebrate species. In the current report, we present the characterization of Scg-insulin-related peptide (IRP), an insulin-related peptide in the desert locust, Schistocerca gregaria. This peptide was isolated from corpora cardiaca (CC) extracts by means of a high-performance liquid chromatography (HPLC)-based purification strategy. Subsequent cloning and sequencing of the corresponding cDNA revealed that the encoded Scg-IRP precursor displays the structural organization that is typical for members of the insulin superfamily. Moreover, immunocytochemistry on brain tissue sections demonstrated the presence of Scg-IRP in median neurosecretory cells of the pars intercerebralis and their projections towards the storage part of the CC. Quantitative real-time RT-PCR studies revealed the presence of Scg-IRP transcripts in a variety of tissues, including nervous tissue and fat body. Furthermore, these transcripts showed a tissue- and phase-dependent, temporal regulation during the reproductive cycle of adult males and females. Finally, we demonstrated that Scg-IRP interacts in vitro with a recombinant neuroparsin, a locust protein displaying sequence similarity with vertebrate IGF binding proteins.
Vitamins and Hormones Series | 2005
Ilse Claeys; Jeroen Poels; Gert Simonet; Vanessa Franssens; Tom Van Loy; Matthias B. Van Hiel; Bert Breugelmans; Jozef Vanden Broeck
Peptides form a very versatile class of extracellular messenger molecules that function as chemical communication signals between the cells of an organism. Molecular diversity is created at different levels of the peptide synthesis scheme. Peptide messengers exert their biological functions via specific signal-transducing membrane receptors. The evolutionary origin of several peptide precursor and receptor gene families precedes the divergence of the important animal Phyla. In this chapter, current knowledge is reviewed with respect to the analysis of peptide receptors from insects, incorporating many recent data that result from the sequencing of different insect genomes. Therefore, detailed information is provided on six different peptide receptor families belonging to two distinct receptor categories (i.e., the heptahelical and the single transmembrane receptors). In addition, the remaining problems, the emerging concepts, and the future prospects in this area of research are discussed.
Advances in Experimental Medicine and Biology | 2010
Matthias B. Van Hiel; Tom Van Loy; Jeroen Poels; Hans Peter Vandersmissen; Heleen Verlinden; Liesbeth Badisco; Jozef Vanden Broeck
Vaious insect species have a severe impact on human welfare and environment and thus force us to continuously develop novel agents for pest control. Neuropeptides constitute a very versatile class of bioactive messenger molecules that initiate and/or regulate a wide array of vital biological processes in insects by acting on their respective receptors in the plasmamembrane of target cells. These receptors belong to two distinct categories of signal transducing proteins, i.e., heptahelical or G protein-coupled receptors (7TM, GPCR) and single transmembrane containing receptors. An increasing amount ofevidence indicates that insect neuropeptide-receptor couples play crucial roles in processes as diverse as development, metabolism, ecdysis and reproduction. As such, they gain growing interest as promising candidate targets for the development of a new generation of species- and receptor-specific insect control agents that may generate fewer side effects. In this chapter, we will present some examples of insect neuropeptide receptors and aim to demonstrate their fundamental importance in insect biology.
Annual Review of Entomology | 2017
Liliane Schoofs; Arnold De Loof; Matthias B. Van Hiel
Neuropeptides are by far the largest and most diverse group of signaling molecules in multicellular organisms. They are ancient molecules important in regulating a multitude of processes. Their small proteinaceous character allowed them to evolve and radiate quickly into numerous different molecules. On average, hundreds of distinct neuropeptides are present in animals, sometimes with unique classes that do not occur in distantly related species. Acting as neurotransmitters, neuromodulators, hormones, or growth factors, they are extremely diverse and are involved in controlling growth, development, ecdysis, digestion, diuresis, and many more physiological processes. Neuropeptides are also crucial in regulating myriad behavioral actions associated with feeding, courtship, sleep, learning and memory, stress, addiction, and social interactions. In general, behavior ensures that an organism can survive in its environment and is defined as any action that can change an organisms relationship to its surroundings. Even though the mode of action of neuropeptides in insects has been vigorously studied, relatively little is known about most neuropeptides and only a few model insects have been investigated. Here, we provide an overview of the roles neuropeptides play in insect behavior. We conclude that multiple neuropeptides need to work in concert to coordinate certain behaviors. Additionally, most neuropeptides studied to date have more than a single function.
Peptides | 2015
Matthias B. Van Hiel; Hans Peter Vandersmissen; Paul Proost; Jozef Vanden Broeck
Leucine-rich repeat containing G protein-coupled receptors (LGRs) comprise a cluster of transmembrane proteins, characterized by the presence of a large N-terminal extracellular domain. This receptor group can be classified into three subtypes. Belonging to the subtype C LGRs are the mammalian relaxin receptors LGR7 (RXFP1) and LGR8 (RXFP2), which mediate important reproductive and other processes. We identified two related receptors in the genome of the fruit fly and cloned their open reading frames into an expression vector. Interestingly, dLGR3 demonstrated constitutive activity at very low doses of transfected plasmid, whereas dLGR4 did not show any basal activity. Both receptors exhibited a similar expression pattern during development, with relatively high transcript levels during the first larval stage. In addition, both receptors displayed higher expression in male adult flies as compared to female flies. Analysis of the tissue distribution of both receptor transcripts revealed a high expression of dLGR3 in the female fat body, while the expression of dLGR4 peaked in the midgut of both the wandering and adult stage.
Journal of the American Society for Mass Spectrometry | 2015
Jelle Caers; Kurt Boonen; Jan Van Den Abbeele; Liesbeth Van Rompay; Liliane Schoofs; Matthias B. Van Hiel
AbstractNeuropeptides and peptide hormones are essential signaling molecules that regulate nearly all physiological processes. The recent release of the tsetse fly genome allowed the construction of a detailed in silico neuropeptide database (International Glossina Genome Consortium, Science 344, 380–386 (2014)), as well as an in-depth mass spectrometric analysis of the most important neuropeptidergic tissues of this medically and economically important insect species. Mass spectrometric confirmation of predicted peptides is a vital step in the functional characterization of neuropeptides, as in vivo peptides can be modified, cleaved, or even mispredicted. Using a nanoscale reversed phase liquid chromatography coupled to a Q Exactive Orbitrap mass spectrometer, we detected 51 putative bioactive neuropeptides encoded by 19 precursors: adipokinetic hormone (AKH) I and II, allatostatin A and B, capability/pyrokinin (capa/PK), corazonin, calcitonin-like diuretic hormone (CT/DH), FMRFamide, hugin, leucokinin, myosuppressin, natalisin, neuropeptide-like precursor (NPLP) 1, orcokinin, pigment dispersing factor (PDF), RYamide, SIFamide, short neuropeptide F (sNPF) and tachykinin. In addition, propeptides, truncated and spacer peptides derived from seven additional precursors were found, and include the precursors of allatostatin C, crustacean cardioactive peptide, corticotropin releasing factor-like diuretic hormone (CRF/DH), ecdysis triggering hormone (ETH), ion transport peptide (ITP), neuropeptide F, and proctolin, respectively. The majority of the identified neuropeptides are present in the central nervous system, with only a limited number of peptides in the corpora cardiaca–corpora allata and midgut. Owing to the large number of identified peptides, this study can be used as a reference for comparative studies in other insects.n Graphical Abstractᅟ
Proceedings of the National Academy of Sciences of the United States of America | 2017
Elien Van Sinay; Olivier Mirabeau; Geert Depuydt; Matthias B. Van Hiel; Katleen Peymen; Jan Watteyne; Sven Zels; Liliane Schoofs; Isabel Beets
Significance The hypothalamic neuropeptide TRH (thyrotropin-releasing hormone) is one of the major endocrine factors that regulate vertebrate physiology. For decades the general assumption has been that TRH neuropeptides are not present in protostomes, at least not in ecdysozoans, despite the presence of TRH receptor orthologs in these phyla. Here we identify a TRH-related neuropeptide–receptor pathway in the nematode Caenorhabditis elegans. TRH-like neuropeptides activate the C. elegans TRH receptor ortholog in cell-culture cells. Using RNAi and CRISPR/Cas9 reverse genetics, we discovered that TRH-related signaling in the pharyngeal system promotes C. elegans growth. Our study provides evidence of a functional TRH neuropeptide–receptor pathway in invertebrates, suggesting that TRH signaling had evolved in a bilaterian ancestor more than 700 million years ago. In vertebrates thyrotropin-releasing hormone (TRH) is a highly conserved neuropeptide that exerts the hormonal control of thyroid-stimulating hormone (TSH) levels as well as neuromodulatory functions. However, a functional equivalent in protostomian animals remains unknown, although TRH receptors are conserved in proto- and deuterostomians. Here we identify a TRH-like neuropeptide precursor in Caenorhabditis elegans that belongs to a bilaterian family of TRH precursors. Using CRISPR/Cas9 and RNAi reverse genetics, we show that TRH-like neuropeptides, through the activation of their receptor TRHR-1, promote growth in C. elegans. TRH-like peptides from pharyngeal motor neurons are required for normal body size, and knockdown of their receptor in pharyngeal muscle cells reduces growth. Mutants deficient for TRH signaling have no defects in pharyngeal pumping or isthmus peristalsis rates, but their growth defect depends on the bacterial diet. In addition to the decrease in growth, trh-1 mutants have a reduced number of offspring. Our study suggests that TRH is an evolutionarily ancient neuropeptide, having its origin before the divergence of protostomes and deuterostomes, and may ancestrally have been involved in the control of postembryonic growth and reproduction.
General and Comparative Endocrinology | 2014
Hans Peter Vandersmissen; Matthias B. Van Hiel; Tom Van Loy; Rut Vleugels; Jozef Vanden Broeck
G protein-coupled receptors (GPCRs) play key roles in a wide diversity of physiological processes and signalling pathways. The leucine-rich repeats containing GPCRs (LGRs) are a subfamily that is well-conserved throughout most metazoan phyla and have important regulatory roles in vertebrates. Here, we report on the critical role of Drosophila melanogaster LGR1, the fruit fly homologue of the vertebrate glycoprotein hormone receptors, in development as a factor involved in the regulation of pupariation. Transcript profiling revealed that lgr1 transcripts are most abundant in third instar larvae and adult flies. The tissues displaying the highest transcript levels were the hindgut, the rectum and the salivary glands. Knockdown using RNA interference (RNAi) demonstrated that white pupa formation was severely suppressed in D. melanogaster lgr1 RNAi larvae. Associated with this developmental defect was a reduced ecdysteroid titer, which is in line with significantly reduced transcript levels detected for the Halloween genes shadow (sad) and spookier (spok) in the third instar lgr1 RNAi larvae compared to the control condition.