Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias Bureik is active.

Publication


Featured researches published by Matthias Bureik.


The Journal of Steroid Biochemistry and Molecular Biology | 2002

Development of a test system for inhibitors of human aldosterone synthase (CYP11B2): screening in fission yeast and evaluation of selectivity in V79 cells.

Peter B. Ehmer; Matthias Bureik; Rita Bernhardt; Ursula Müller; Rolf W. Hartmann

Aldosterone synthase (CYP11B2) is a mitochondrial cytochrome P450 enzyme catalyzing the last steps of aldosterone production in the adrenal cortex. A new pharmacological approach for the treatment of the aldosterone induced effects in congestive heart failure and all forms of hyperaldosteronism could be the use of CYP11B2 inhibitors. In search for such compounds, it was our goal to develop a cellular enzyme assay suitable for screening high numbers of compounds. An assay procedure for the evaluation of inhibitors using the human CYP11B2 expressed in fission yeast Schizosaccharomyces pombe was established and a series of 10 compounds was tested in this whole cellular system. Human 11beta-hydroxylase (CYP11B1), which catalyzes the production of glucocorticoids, shows more than 90% homology compared to human CYP11B2. As this enzyme should not be affected, strong inhibitors of CYP11B2 have to be tested for selectivity. For that purpose, an assay procedure with V79MZ cells that express human CYP11B1 and CYP11B2, respectively, was integrated into the evaluation process. Using these screening procedures a potent and rather selective non-steroidal inhibitor of human CYP11B2 was detected with an IC(50) value of 59nM. We also identified a very potent inhibitor of both enzymes showing a stronger inhibitory activity against the cortisol producing CYP11B1.


Clinical Cancer Research | 2005

Vitamin D3 Metabolism in Human Glioblastoma Multiforme: Functionality of CYP27B1 Splice Variants, Metabolism of Calcidiol, and Effect of Calcitriol

Britta Diesel; Jens Radermacher; Matthias Bureik; Rita Bernhardt; Markus Seifert; Jörg Reichrath; Ulrike Fischer; Eckart Meese

Purpose: A better understanding of the vitamin D3 metabolism is required to evaluate its potential therapeutic value for cancers. Here, we set out to contribute to the understanding of vitamin D3 metabolism in glioblastoma multiforme. Experimental Design: We did nested touchdown reverse transcription-PCR (RT-PCR) to identify CYP27B1 splice variants and real-time RT-PCR to quantify the expression of CYP27B1. A cell line was treated with calcitriol to determine the effect on the expression of CYP27B1, 1α,25-dihydroxyvitamin D3-24-hydroxylase (CYP24), and vitamin D3 receptor (VDR). We generated three antibodies for the specific detection of CYP27B1 and splice variants. High-performance TLC was done to determine the endogenous CYP27B1 activity and the functionality of CYP27B1 splice variants. Using WST-1 assay, we determined the effect of vitamin D3 metabolites on proliferation. Results: We report a total of 16 splice variants of CYP27B1 in glioblastoma multiforme and a different expression of CYP27B1 and variants between glioblastoma multiforme and normal tissues. We found preliminary evidence for enzymatic activity of endogenous CYP27B1 in glioblastoma multiforme cell cultures but not for the functionality of the splice variants. By adding calcitriol, we found a proliferative effect for some cell lines depending on the dose of calcitriol. The administration of calcitriol led to an elevated expression of CYP27B1 and CYP24 but left the expression of the VDR unaltered. Conclusions: Our findings show that glioblastoma multiforme cell lines metabolize calcidiol. In addition, we show various effects mediated by calcitriol. We found a special vitamin D3 metabolism and mode of action in glioblastoma multiforme that has to be taken into account in future vitamin D3–related therapies.


Molecular and Cellular Endocrinology | 2004

Development of test systems for the discovery of selective human aldosterone synthase (CYP11B2) and 11β-hydroxylase (CYP11B1) inhibitors.: Discovery of a new lead compound for the therapy of congestive heart failure, myocardial fibrosis and hypertension

Matthias Bureik; Katja Hübel; Calin-Aurel Dragan; Jochen M. Scher; Hans Becker; Natalie Lenz; Rita Bernhardt

Two key players in adrenal steroid hormone biosynthesis are the human mitochondrial cytochrome P450 enzymes CYP11B1 and CYP11B2 that catalyze the final steps in the biosynthesis of cortisol and aldosterone, respectively. Overproduction of both hormones contributes to a number of severe diseases, as illustrated by the association of elevated aldosterone levels with hypertension and higher mortality in congestive heart failure, and by Cushings syndrome as the clinical correlate of chronic hypercortisolism. Thus, CYP11B1 and CYP11B2 comprise new targets for drug treatment and selective inhibitors of both enzymes are of high pharmacological interest. To facilitate the search for such compounds, we have established novel test procedures using recombinant fission yeast strains that stably express these enzymes. The aim of this study was to compare the inhibition profiles displayed by these enzymes in established mammalian cell culture test systems to those obtained with the new fission yeast assays, and to evaluate the usefulness of the Schizosaccharomyces pombe strains as screening systems for the identification of novel lead compounds. Using these test systems, we were able to identify a new and very selective CYP11B2 inhibitor (SIAS-1) that displayed no detectable interference with CYP11B1 activity.


Bioanalysis | 2010

Production of human phase 1 and 2 metabolites by whole-cell biotransformation with recombinant microbes

Andy Zöllner; Daniela Buchheit; Markus R. Meyer; Hans H. Maurer; Frank T. Peters; Matthias Bureik

Cytochrome P450 enzymes (CYPs or P450s) are the most important enzymes involved in the phase I metabolism of drugs and poisons in humans, while UDP glycosyltransferases catalyze the majority of phase II reactions. In addition, a number of other enzymes or enzyme families contribute to the metabolism of xenobiotica, including alcohol dehydrogenase, aldehyde dehydrogenase, ester and amide hydrolases, epoxide hydrolase and flavine monooxygenases, as well as sulfotransferases, catechol-O-methyltransferase and N-acetyltransferase. A thorough understanding of their activity and of the properties of the metabolites they form is an essential prerequisite for the assessment of drug-caused side effects or toxicity. In this context of MIST, efficient production systems are needed to permit the large-scale production of human drug metabolites. As classical chemical synthesis cannot always provide these metabolites, biotechnological approaches have been developed that typically employ the recombinant expression of human drug-metabolizing enzymes. This review summarizes the current knowledge regarding whole-cell biotransformation processes that make use of such an approach.


Drug Metabolism and Disposition | 2010

Glucuronide Production by Whole-Cell Biotransformation Using Genetically Engineered Fission Yeast Schizosaccharomyces pombe

Călin-Aurel Drăgan; Daniela Buchheit; Daniel Bischoff; Thomas Ebner; Matthias Bureik

Drug metabolites generated by UDP glycosyltransferases (UGTs) are needed for drug development and toxicity studies, especially in the context of safety testing of metabolites during drug development. Because chemical metabolite synthesis can be arduous, various biological approaches have been developed; however, no whole-cell biotransformation with recombinant microbes that express human UGTs was yet achieved. In this study we expressed human UDP glucose-6-dehydrogenase together with several human or rat UGT isoforms in the fission yeast Schizosaccharomyces pombe and generated strains that catalyze the whole-cell glucuronidation of standard substrates. Moreover, we established two methods to obtain stable isotope-labeled glucuronide metabolites: the first uses a labeled aglycon, whereas the second uses 13C6-glucose as a metabolic precursor of isotope-labeled UDP-glucuronic acid and yields a 6-fold labeled glucuronide. The system described here should lead to a significant facilitation in the production of both labeled and unlabeled drug glucuronides for industry and academia.


Biological Chemistry | 2010

CYP21-catalyzed production of the long-term urinary metandienone metabolite 17β-hydroxymethyl-17α-methyl-18-norandrosta-1,4,13-trien-3-one: a contribution to the fight against doping

Andy Zöllner; Maria Kristina Parr; Călin-Aurel Drăgan; Stefan Dräs; Nils Schlörer; Frank T. Peters; Hans H. Maurer; Wilhelm Schänzer; Matthias Bureik

Abstract Anabolic-androgenic steroids are some of the most frequently misused drugs in human sports. Recently, a previously unknown urinary metabolite of metandienone, 17β-hydroxymethyl-17α-methyl-18-norandrosta-1,4,13-trien-3-one (20OH-NorMD), was discovered via LC-MS/MS and GC-MS. This metabolite was reported to be detected in urine samples up to 19 days after administration of metandienone. However, so far it was not possible to obtain purified reference material of this metabolite and to confirm its structure via NMR. Eleven recombinant strains of the fission yeast Schizosaccharomyces pombe that express different human hepatic or steroidogenic cytochrome P450 enzymes were screened for production of this metabolite in a whole-cell biotransformation reaction. 17,17-Dimethyl-18-norandrosta-1,4,13-trien-3-one, chemically derived from metandienone, was used as substrate for the bioconversion, because it could be converted to the final product in a single hydroxylation step. The obtained results demonstrate that CYP21 and to a lesser extent also CYP3A4 expressing strains can catalyze this steroid hydroxylation. Subsequent 5 l-scale fermentation resulted in the production and purification of 10 mg of metabolite and its unequivocal structure determination via NMR. The synthesis of this urinary metandienone metabolite via S. pombe-based whole-cell biotransformation now allows its use as a reference substance in doping control assays.


Biological Chemistry | 2009

Human CYP4Z1 catalyzes the in-chain hydroxylation of lauric acid and myristic acid.

Andy Zöllner; Calin-Aurel Dragan; Dominik Pistorius; Rolf Müller; Helge B. Bode; Frank T. Peters; Hans H. Maurer; Matthias Bureik

Abstract Overexpression of human CYP4Z1, a cytochrome P450 enzyme, has been correlated with poor prognosis in human cancer. However, its catalytic properties are not yet known. We expressed this P450 in Schizosaccharomyces pombe and demonstrate by whole-cell biotransformation assays CYP4Z1-dependent in-chain hydroxylation of lauric and myristic acid, which in both cases leads to the formation of four different monohydroxylated products at positions ω-2, ω-3, ω-4, and ω-5, respectively. The CYP4Z1-expressing fission yeast should be a new valuable tool for testing cancer drugs or for the development of new prodrug strategies.


Metabolic Engineering | 2014

Overcoming the metabolic burden of protein secretion in Schizosaccharomyces pombe – A quantitative approach using 13C-based metabolic flux analysis

Tobias Klein; Sabrina Lange; Nadine Wilhelm; Matthias Bureik; Tae-Hoon Yang; Elmar Heinzle; Konstantin Schneider

Protein secretion in yeast is generally associated with a burden to cellular metabolism. To investigate this metabolic burden in Schizosaccharomyces pombe, we constructed a set of strains secreting the model protein maltase in different amounts. We quantified the influence of protein secretion on the metabolism applying (13)C-based metabolic flux analysis in chemostat cultures. Analysis of the macromolecular biomass composition revealed an increase in cellular lipid content at elevated levels of protein secretion and we observed altered metabolic fluxes in the pentose phosphate pathway, the TCA cycle, and around the pyruvate node including mitochondrial NADPH supply. Supplementing acetate to glucose or glycerol minimal media was found to improve protein secretion, accompanied by an increased cellular lipid content and carbon flux through the TCA cycle as well as increased mitochondrial NADPH production. Thus, systematic metabolic analyses can assist in identifying factors limiting protein secretion and in deriving strategies to overcome these limitations.


Drug Metabolism and Disposition | 2011

Production of Ibuprofen Acyl Glucosides by Human UGT2B7

Daniela Buchheit; Calin-Aurel Dragan; Schmitt Ei; Matthias Bureik

UDP-glycosyltransferases (UGTs) are an important group of enzymes that participate in phase II metabolism of xenobiotics and use the cofactor UDP-glucuronic acid for the production of glucuronides. When acting on molecules bearing a carboxylic acid they can form acyl glucuronides, a group of metabolites that has gained significant interest in recent years because of concerns about their potential role in drug toxicity. In contrast, reports about the production of drug acyl glucosides (which might also display high reactivity) have been scarce. In this study, we discovered the formation of acyl glycoside metabolites of R- and S-ibuprofen (Ibu) by human liver microsomes supplied with the cofactor UDP-glucose. Subsequently, human UGT2B7*1 and UGT2B7*2 recombinantly expressed in fission yeast Schizosaccharomyces pombe could be shown to catalyze these reactions. Moreover, we could enhance the glucoside production rate in fission yeast by overexpressing the fission yeast gene SPCC1322.04, a potential UDP-glucose pyrophosphorylase (UGPase), but not by overexpression of SPCC794.10, and therefore suggest to name this gene fyu1 for fission yeast UGPase1. It was interesting to note that pronounced differences between the two polymorphic UGT2B7 variants were observed with respect to acyl glucoside production. Finally, using the metabolic precursor [13C6]glucose, we demonstrated the production of stable isotope-labeled reference standards of Ibu acyl glucoside and Ibu acyl glucuronide by whole-cell biotransformation in fission yeast.


Toxicology Letters | 2012

Unexpected contribution of cytochrome P450 enzymes CYP11B2 and CYP21, as well as CYP3A4 in xenobiotic androgen elimination – Insights from metandienone metabolism

Maria Kristina Parr; Andy Zöllner; Gregor Fußhöller; Georg Opfermann; Nils Schlörer; Mirela Zorio; Matthias Bureik; Wilhelm Schänzer

The metabolism of a variety of anabolic steroids frequently misused for doping purposes has been investigated in the last years. This research mainly focused on main and long-term metabolites suitable for detection, but detailed clearance mechanisms have rarely been elucidated. Recent studies on metandienone focused on the identification of 17β-hydroxymethyl-17α-methyl-18-norandrosta-1,4,13-trien-3-one (20βOH-NorMD) as long-term metabolite, however, the metabolic pathway of its generation remained unclear. Metandienone and its Wagner-Meerwein rearrangement product 17,17-dimethyl-18-norandrosta-1,4,13-trien-3-one (NorMD) were hydroxylated by different human cytochrome P450 enzymes (CYPs). Some of their hydroxylation products were chemically synthesized and characterized by mass spectrometry to allow for their trace detection in urine samples. Following oral administration of metandienone or NorMD in one human volunteer each the post administration urines were checked for the presence of those hydroxylated metabolites using GC-MS/MS analysis. The human mitochondrial steroid hydroxylating enzymes CYP11B1 and CYP11B2 were capable to metabolize metandienone leading to the formation of 11β-hydroxymetandienone and 18-hydroxymetandienone. Following Wagner-Meerwein rearrangement, the resulting products could be assigned to 20βOH-NorMD and 11βOH-NorMD. The contribution of CYP11B1 and CYP11B2 in human metabolism of metandienone was confirmed by analysis of post-administration samples of metandienone and NorMD. Combined with the results from a previous study, enzymatic pathways were identified that involve CYP21 and CYP3A4 in the hydroxylation of NorMD, while CYP21, CYP3A4 and CYP11B2 take part in 20βOH-NorMD generation from MD. The current study represents a valuable contribution to the elucidation of clearance mechanisms of anabolic steroids and also indicates that mainly non-liver CYPs seem to be involved in these processes.

Collaboration


Dive into the Matthias Bureik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge