Matthias Eden
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthias Eden.
Circulation Research | 2006
Tibor Kempf; Matthias Eden; Jens Strelau; Marian Naguib; Christian Willenbockel; Jörn Tongers; Jörg Heineke; Daniel Kotlarz; Jian Xu; Jeffery D. Molkentin; Hans W. Niessen; Helmut Drexler; Kai C. Wollert
Data from the Women’s Health Study show that serum levels of growth-differentiation factor-15 (GDF-15), a distant member of the transforming growth factor-&bgr; superfamily, are an independent risk indicator for adverse cardiovascular events. However, the cellular sources, upstream regulators, and functional effects of GDF-15 in the cardiovascular system have not been elucidated. We have identified GDF-15 by cDNA expression array analysis as a gene that is strongly upregulated by nitrosative stress in cultured cardiomyocytes isolated from 1- to 3-day-old rats. GDF-15 mRNA and pro-peptide expression levels were also induced in cardiomyocytes subjected to simulated ischemia/reperfusion (I/R) via NO–peroxynitrite-dependent signaling pathways. GDF-15 was actively secreted into the culture supernatant, suggesting that it might exert autocrine/paracrine effects during I/R. To explore the in vivo relevance of these findings, mice were subjected to transient or permanent coronary artery ligation. Myocardial GDF-15 mRNA and pro-peptide abundance rapidly increased in the area-at-risk after ischemic injury. Similarly, patients with an acute myocardial infarction had enhanced myocardial GDF-15 pro-peptide expression levels. As shown by immunohistochemistry, cardiomyocytes in the ischemic area contributed significantly to the induction of GDF-15 in the infarcted human heart. To delineate the function of GDF-15 during I/R, Gdf-15 gene-targeted mice were subjected to transient coronary artery ligation for 1 hour followed by reperfusion for 24 hours. Gdf-15–deficient mice developed greater infarct sizes and displayed more cardiomyocyte apoptosis in the infarct border zone after I/R compared with wild-type littermates, indicating that endogenous GDF-15 limits myocardial tissue damage in vivo. Moreover, treatment with recombinant GDF-15 protected cultured cardiomyocytes from apoptosis during simulated I/R as shown by histone ELISA, TUNEL/Hoechst staining, and annexin V/propidium iodide fluorescence-activated cell sorting (FACS) analysis. Mechanistically, the prosurvival effects of GDF-15 in cultured cardiomyocytes were abolished by phosphoinositide 3-OH kinase inhibitors and adenoviral expression of dominant-negative Akt1 (K179M mutation). In conclusion, our study identifies induction of GDF-15 in the heart as a novel defense mechanism that protects from I/R injury.
Circulation Research | 2010
Rainer Will; Matthias Eden; Steffen Just; Arne Hansen; Alexandra Eder; Derk Frank; Christian Kuhn; Thalia Seeger; Ulrike Oehl; Stefan Wiemann; Bernhard Korn; Manfred Koegl; Wolfgang Rottbauer; Thomas Eschenhagen; Hugo A. Katus; Norbert Frey
Rationale and Objective: The M-band represents a transverse structure in the center of the sarcomeric A-band and provides an anchor for the myosin-containing thick filaments. In contrast to other sarcomeric structures, eg, the Z-disc, only few M-band–specific proteins have been identified to date, and its exact molecular composition remains unclear. Methods and Results: Using a bioinformatic approach to identify novel heart- and muscle-specific genes, we found a leucine rich protein, myomasp (Myosin-interacting, M-band-associated stress-responsive protein)/LRRC39. RT-PCR and Northern and Western blot analyses confirmed a cardiac-enriched expression pattern, and immunolocalization of myomasp revealed a strong and specific signal at the sarcomeric M-band. Yeast 2-hybrid screens, as well as coimmunoprecipitation experiments, identified the C terminus of myosin heavy chain (MYH)7 as an interaction partner for myomasp. Knockdown of myomasp in neonatal rat ventricular myocytes (NRVCMs) led to a significant upregulation of the stretch-sensitive genes GDF-15 and BNP. Conversely, the expression of MYH7 and the M-band proteins myomesin-1 and -2 was found to be markedly reduced. Mechanistically, knockdown of myomasp in NRVCM led to a dose-dependent suppression of serum response factor–dependent gene expression, consistent with earlier observations linking the M-band to serum response factor–mediated signaling. Finally, downregulation of myomasp/LRRC39 in spontaneously beating engineered heart tissue constructs resulted in significantly lower force generation and reduced fractional shortening. Likewise, knockdown of the myomasp/LRRC39 ortholog in zebrafish resulted in severely impaired heart function and cardiomyopathy in vivo. Conclusions: These findings reveal myomasp as a previously unrecognized component of an M-band–associated signaling pathway that regulates cardiomyocyte gene expression in response to biomechanical stress.
Journal of Molecular and Cellular Cardiology | 2014
Derk Frank; Ashraf Y Rangrez; Reza Poyanmehr; Thalia S. Seeger; Christian Kuhn; Matthias Eden; Katharina Stiebeling; Alexander Bernt; Christine Grund; Werner W. Franke; Norbert Frey
The intercalated disc (ID) is a major component of the cell-cell contact structures of cardiomyocytes and has been recognized as a hot spot for cardiomyopathy. We have previously identified Myozap as a novel cardiac-enriched ID protein, which interacts with several other ID proteins and is involved in RhoA/SRF signaling in vitro. To now study its potential role in vivo we generated a mouse model with cardiac overexpression of Myozap. Transgenic (Tg) mice developed cardiomyopathy with hypertrophy and LV dilation. Consistently, these mice displayed upregulation of the hypertrophy-associated and SRF-dependent gene expression. Pressure overload (transverse aortic constriction, TAC) caused exaggerated cardiac hypertrophy, further loss of contractility and LV dilation. Similarly, a physiological stimulus (voluntary running) also led to significant LV dysfunction. On the ultrastructural level, Myozap-Tg mouse hearts exhibited massive protein aggregates composed of Myozap, desmoplakin and other ID proteins. This aggregate-associated pathology closely resembled the alterations observed in desmin-related cardiomyopathy. Interestingly, desmin was not detectable in the aggregates, yet was largely displaced from the ID. Molecular analyses revealed induction of autophagy and dysregulation of the unfolded protein response (UPR), associated with apoptosis. Taken together, cardiac overexpression of Myozap leads to cardiomyopathy, mediated, at least in part by induction of Rho-dependent SRF signaling in vivo. Surprisingly, this phenotype was also accompanied by protein aggregates in cardiomyocytes, UPR alteration, accelerated autophagy and apoptosis. Thus, this mouse model may also offer additional insight into the pathogenesis of protein-aggregate-associated cardiomyopathies and represents a new candidate gene itself.
Journal of Biological Chemistry | 2016
Ashraf Y Rangrez; Matthias Eden; Reza Poyanmehr; Christian Kuhn; Katharina Stiebeling; Franziska Dierck; Alexander Bernt; Renate Lüllmann-Rauch; Hartmut Weiler; Paulus Kirchof; Derk Frank; Norbert Frey
Background: Little is known about cardiac function of myozap, a novel intercalated disc (ID) protein. Results: Myozap deficiency leads to the junctional remodeling, cardiomyopathy, heart failure, and increased mortality in response to increased biomechanical stress. Conclusion: Myozap is required for proper adaptation to increased biomechanical stress. Significance: We provide an essential role of the ID in general and myozap in particular in the context of cardiac remodeling. The intercalated disc (ID) is a “hot spot” for heart disease, as several ID proteins have been found mutated in cardiomyopathy. Myozap is a recent addition to the list of ID proteins and has been implicated in serum-response factor signaling. To elucidate the cardiac consequences of targeted deletion of myozap in vivo, we generated myozap-null mutant (Mzp−/−) mice. Although Mzp−/− mice did not exhibit a baseline phenotype, increased biomechanical stress due to pressure overload led to accelerated cardiac hypertrophy, accompanied by “super”-induction of fetal genes, including natriuretic peptides A and B (Nppa/Nppb). Moreover, Mzp−/− mice manifested a severe reduction of contractile function, signs of heart failure, and increased mortality. Expression of other ID proteins like N-cadherin, desmoplakin, connexin-43, and ZO-1 was significantly perturbed upon pressure overload, underscored by disorganization of the IDs in Mzp−/− mice. Exploration of the molecular causes of enhanced cardiac hypertrophy revealed significant activation of β-catenin/GSK-3β signaling, whereas MAPK and MKL1/serum-response factor pathways were inhibited. In summary, myozap is required for proper adaptation to increased biomechanical stress. In broader terms, our data imply an essential function of the ID in cardiac remodeling beyond a mere structural role and emphasize the need for a better understanding of this molecular structure in the context of heart disease.
Nature Communications | 2016
Matthias Eden; Benjamin Meder; Mirko Völkers; Montatip Poomvanicha; Katrin Domes; Maxime Branchereau; Pauline Marck; Rainer Will; Alexander Bernt; Ashraf Y Rangrez; Matthias Busch; Martin Hrabě de Angelis; Christophe Heymes; Wolfgang Rottbauer; Patrick Most; Franz Hofmann; Norbert Frey
Calcium signalling plays a critical role in the pathogenesis of heart failure. Here we describe a cardiac protein named Myoscape/FAM40B/STRIP2, which directly interacts with the L-type calcium channel. Knockdown of Myoscape in cardiomyocytes decreases calcium transients associated with smaller Ca2+ amplitudes and a lower diastolic Ca2+ content. Likewise, L-type calcium channel currents are significantly diminished on Myoscape ablation, and downregulation of Myoscape significantly reduces contractility of cardiomyocytes. Conversely, overexpression of Myoscape increases global Ca2+ transients and enhances L-type Ca2+ channel currents, and is sufficient to restore decreased currents in failing cardiomyocytes. In vivo, both Myoscape-depleted morphant zebrafish and Myoscape knockout (KO) mice display impairment of cardiac function progressing to advanced heart failure. Mechanistically, Myoscape-deficient mice show reduced L-type Ca2+currents, cell capacity and calcium current densities as a result of diminished LTCC surface expression. Finally, Myoscape expression is reduced in hearts from patients suffering of terminal heart failure, implying a role in human disease. Heart failure is a major public health issue but due to our poor disease understanding the current therapies are symptomatic. Here the authors identify Myoscape as a novel cardiac protein regulating membrane localization of the L-type calcium channel and hearts contractile force, thus promising new therapeutic avenues for heart failure.
Journal of Computer Assisted Tomography | 2015
Christoph Langer; Philipp J. Schaefer; Matthias Lutz; Matthias Eden; Mirko Hohnhorst; Hauke Harders; Lothar Faber; Olav Jansen; Marcus Both; Norbert Frey
Introduction With subgroups of patients with hypertrophic cardiomyopathy (HCM) confers a 4% to 5% risk for adverse prognosis. Besides left-ventricular muscle mass (LV-MM) myocardial fibrosis (MF) assessable by late gadolinium enhancement in cardiovascular magnetic resonance (LGE-CMR) has been related to that. Myocardial fibrosis can also be demonstrated by late enhancement (LE) in late-enhanced multislice computed tomography (leMDCT). This analysis investigates leMDCT whether to enable quantification of LE load in terms of LE mass by percent LV-MM in HCM. Methods In a prospective validation study, we included 30 consecutive patients with HCM who underwent leMDCT (64 slice) and LGE-CMR (1.5 T). The leMDCT scan was performed 7 minutes after injection of iodine contrast (Iopromid). Endocardial and epicardial planimetry served for the assessment of LV-MM. Visually detectable LE was quantified using the manual quantification method resulting in LE by percent LV-MM (%LE). The LGE-CMR data served for validation. Results Mean (SD) age was 64.1 (13.9) years. Myocardial fibrosis prevalence was 63.3% (19/30 patients indentified by both leMDCT and LGE-CMR). In leMDCT, tissue density in LE areas compared with normal myocardium was higher (138.2 [23.9] HU vs 98.4 [16.5] HU, P < 0.001) but lower than in the LV cavity (138.2 [23.9] HU vs 169.2 [35.9] HU, P < 0.001). Late enhancement mass in leMDCT seemed to be 7.9 (8.5) g LE versus 8.6 [11] g LGE in CMR (P = 0.497, r = 0.95) resulting in a leMDCT/LGE-CMR relation of 1.2. Referring LE mass to LV-MM gave an LE proportion measured by leMDCT of 4 (3.9) %LE versus 3.9 (4.1) %LGE in LGE-CMR (r = 0.88, P = 0.75). Intraobserver/interobserver reliability of LE mass assessment showed an intraclass correlation coefficient of 0.99 and 0.97. Conclusions In patients with HCM, leMDCT provides volumetric assessment of LE mass—absolutely and by percent LV-MM.
Medical Teacher | 2017
Martina E. Spehlmann; Matthias Eden; Norbert Frey; Mark Lüdde
Mughal Z, Mughal F. 2016. The junior doctor contract in the National Health Service. J Family Med Prim Care. 5:225–227. Os orio IHS, Gonçalves LM, Pozzobon PM, Gaspar Jr JJ, Miranda FM, Lucchetti AL, Lucchetti G. 2017. Effect of an educational intervention in “spirituality and health” on knowledge, attitudes, and skills of students in health-related areas: a controlled randomized trial. Med Teach. http://dx.doi.org/10.1080/0142159X.2017. 1337878
Scientific Reports | 2016
Alexander Bernt; Ashraf Y Rangrez; Matthias Eden; Andreas Jungmann; Sylvia Katz; Claudia Rohr; Oliver Müller; Hugo A. Katus; Samuel Sossalla; Tatjana Williams; Oliver Ritter; Derk Frank; Norbert Frey
The objective of this study was to identify unknown modulators of Calcineurin (Cn)-NFAT signaling. Measurement of NFAT reporter driven luciferase activity was therefore utilized to screen a human cardiac cDNA-library (~107 primary clones) in C2C12 cells through serial dilutions until single clones could be identified. This extensive screening strategy culminated in the identification of SUMO2 as a most efficient Cn-NFAT activator. SUMO2-mediated activation of Cn-NFAT signaling in cardiomyocytes translated into a hypertrophic phenotype. Prohypertrophic effects were also observed in mice expressing SUMO2 in the heart using AAV9 (Adeno-associated virus), complementing the in vitro findings. In addition, increased SUMO2-mediated sumoylation in human cardiomyopathy patients and in mouse models of cardiomyopathy were observed. To decipher the underlying mechanism, we generated a sumoylation-deficient SUMO2 mutant (ΔGG). Surprisingly, ΔGG replicated Cn-NFAT-activation and the prohypertrophic effects of native SUMO2, both in vitro and in vivo, suggesting a sumoylation-independent mechanism. Finally, we discerned a direct interaction between SUMO2 and CnA, which promotes CnA nuclear localization. In conclusion, we identified SUMO2 as a novel activator of Cn-NFAT signaling in cardiomyocytes. In broader terms, these findings reveal an unexpected role for SUMO2 in cardiac hypertrophy and cardiomyopathy, which may open the possibility for therapeutic manipulation of this pathway.
Journal of the American College of Cardiology | 2013
Christoph Langer; Mark Luedde; Philipp J. Schaefer; Mirko Hohnhorst; Matthias Lutz; Matthias Eden; Christine Gierloff; Christian Prinz; Lothar Faber; Norbert Frey
Patients (pts) with hypertrophic cardiomyopathy (HCM) may present with a variety of symptoms, including sudden cardiac death. Sudden cardiac death due to ventricular fibrillation correlates with the extent of intramural fibrosis (IF). IF can be detected using cardiac magnetic resonance (CMR) by
Journal of Molecular and Cellular Cardiology | 2012
Derk Frank; Johanne Gantenberg; Inka Boomgaarden; Christian Kuhn; Rainer Will; Kai-Uwe Jarr; Matthias Eden; Kristin Kramer; Mark Luedde; Heimo Mairbäurl; Hugo A. Katus; Norbert Frey