Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias Ernst is active.

Publication


Featured researches published by Matthias Ernst.


Nature Immunology | 2006

Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system.

Jason S. Stumhofer; Arian Laurence; Emma H. Wilson; Elaine Huang; Cristina M. Tato; Leanne M. Johnson; Alejandro V. Villarino; Qiulong Huang; Akihiko Yoshimura; David Sehy; Christiaan J. M. Saris; John J. O'Shea; Lothar Hennighausen; Matthias Ernst; Christopher A. Hunter

Studies have focused on the events that influence the development of interleukin 17 (IL-17)–producing T helper cells (TH-17 cells) associated with autoimmunity, such as experimental autoimmune encephalitis, but relatively little is known about the cytokines that antagonize TH-17 cell effector responses. Here we show that IL-27 receptor–deficient mice chronically infected with Toxoplasma gondii developed severe neuroinflammation that was CD4+ T cell dependent and was associated with a prominent IL-17 response. In vitro, treatment of naive primary T cells with IL-27 suppressed the development TH-17 cells induced by IL-6 and transforming growth factor-β, which was dependent on the intracellular signaling molecule STAT1 but was independent of inhibition of IL-6 signaling mediated by the suppressor protein SOCS3. Thus IL-27, a potent inhibitor of TH-17 cell development, may be a useful target for treating inflammatory diseases mediated by these cells.


Cancer Cell | 2009

gp130-Mediated Stat3 Activation in Enterocytes Regulates Cell Survival and Cell-Cycle Progression during Colitis-Associated Tumorigenesis

Julia Bollrath; Toby J. Phesse; Vivian A. von Burstin; Tracy Putoczki; Moritz Bennecke; Trudie Bateman; Tim Nebelsiek; Therese Lundgren-May; Özge Canli; Sarah Schwitalla; Vance Matthews; Roland M. Schmid; Thomas Kirchner; Melek C. Arkan; Matthias Ernst; Florian R. Greten

Although gastrointestinal cancers are frequently associated with chronic inflammation, the underlying molecular links have not been comprehensively deciphered. Using loss- and gain-of-function mice in a colitis-associated cancer model, we establish here a link comprising the gp130/Stat3 transcription factor signaling axis. Mutagen-induced tumor growth and multiplicity are reduced following intestinal epithelial cell (IEC)-specific Stat3 ablation, while its hyperactivation promotes tumor incidence and growth. Conversely, IEC-specific Stat3 deficiency enhances susceptibility to chemically induced epithelial damage and subsequent mucosal inflammation, while excessive Stat3 activation confers resistance to colitis. Stat3 has the capacity to mediate IL-6- and IL-11-dependent IEC survival and to promote proliferation through G1 and G2/M cell-cycle progression as the common tumor cell-autonomous mechanism that bridges chronic inflammation to tumor promotion.


Nature Immunology | 2007

Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10

Jason S. Stumhofer; Jonathan S. Silver; Arian Laurence; Paige M. Porrett; Tajie H. Harris; Laurence A. Turka; Matthias Ernst; Christiaan J. M. Saris; John J. O'Shea; Christopher A. Hunter

Interleukin 10 (IL-10) has a prominent function in regulating the balance between protective and pathological T cell responses. Consistent with that activity, many sources of this cytokine are found in vivo, including from myeloid cells and a variety of T cell subsets. However, although there are many pathways that regulate innate production of IL-10, the factors that govern its synthesis by the adaptive response are poorly understood. Here we report that IL-27 and IL-6 induced T helper type 1 and type 2 cells, as well as T helper cells that produce IL-17, to secrete IL-10. This effect was dependent on the transcription factors STAT1 and STAT3 for IL-27 and on STAT3 for IL-6. Our studies identify a previously unknown pathway that allows the immune system to temper inflammatory responses.


Nature Medicine | 2002

LIF receptor signaling limits immune-mediated demyelination by enhancing oligodendrocyte survival

Helmut Butzkueven; Jian Guo Zhang; Merja Soilu-Hänninen; Hubertus Hochrein; Fiona Chionh; Kylie Shipham; Ben Emery; Ann M. Turnley; Steven Petratos; Matthias Ernst; Perry F. Bartlett; Trevor J. Kilpatrick

Multiple sclerosis (MS) is a disabling inflammatory demyelinating disease of the central nervous system (CNS) that primarily affects young adults. Available therapies can inhibit the inflammatory component of MS but do not suppress progressive clinical disability. An alternative approach would be to inhibit mechanisms that drive the neuropathology of MS, which often includes the death of oligodendrocytes, the cells responsible for myelinating the CNS. Identification of molecular mechanisms that mediate the stress response of oligodendrocytes to optimize their survival would serve this need. This study shows that the neurotrophic cytokine leukemia inhibitory factor (LIF) directly prevents oligodendrocyte death in animal models of MS. We also demonstrate that this therapeutic effect complements endogenous LIF receptor signaling, which already serves to limit oligodendrocyte loss during immune attack. Our results provide a novel approach for the treatment of MS.


Nature Medicine | 2005

Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperproliferation and desensitizes TGF-beta signaling.

Brendan J. Jenkins; Dianne Grail; Thao Nheu; Meri Najdovska; Bo Wang; Paul Waring; Melissa Inglese; Rachel M. McLoughlin; Simon Arnett Jones; Nicholas Topley; Heinz Baumann; Louise M Judd; Andrew S. Giraud; Alex Boussioutas; Hong-Jian Zhu; Matthias Ernst

The latent transcription factor Stat3 is activated by gp130, the common receptor for the interleukin (IL)-6 cytokine family and other growth factor and cytokine receptors. Ligand-induced dimerization of gp130 leads to activation of the Stat1, Stat3 and Shp2-Ras-Erk signaling pathways. Here we assess genetically the contribution of exaggerated Stat3 activation to the phenotype of gp130 Y757F/Y757F mice, in which a knock-in mutation disrupts the negative feedback mechanism on gp130-dependent Stat signaling. Compared to gp130 Y757F/Y757F mice, reduced Stat3 activation in gp130 Y757F/Y757F Stat3+/− mice increased their lifespan, prevented splenomegaly, normalized exaggerated hepatic acute-phase response and lymphocyte trafficking, and suppressed the growth of spontaneously arising gastric adenomas in young mice. These lesions share histological features of gastric polyps in aging mice with monoallelic null mutations in Smad4, which encodes the common transducer for transforming growth factor (TGF)-β signaling. Indeed, hyperactivation of Stat3 desensitizes gp130 Y757F/Y757F cells to the cytostatic effect of TGF-β through transcriptional induction of inhibitory Smad7, thereby providing a novel link for cross-talk between Stat and Smad signaling in gastric homeostasis.


Cell | 2014

RIPK1 Regulates RIPK3-MLKL-Driven Systemic Inflammation and Emergency Hematopoiesis

James A Rickard; Joanne A. O’Donnell; Joseph M Evans; Najoua Lalaoui; Ashleigh R. Poh; TeWhiti Rogers; James E. Vince; Kate E. Lawlor; Robert L. Ninnis; Holly Anderton; Cathrine Hall; Sukhdeep Kaur Spall; Toby J. Phesse; Helen E. Abud; Louise H. Cengia; Jason Corbin; Sandra Mifsud; Ladina Di Rago; Donald Metcalf; Matthias Ernst; Grant Dewson; Andrew W. Roberts; Warren S. Alexander; James M. Murphy; Paul G. Ekert; Seth L. Masters; David L. Vaux; Ben A. Croker; Motti Gerlic; John Silke

Upon ligand binding, RIPK1 is recruited to tumor necrosis factor receptor superfamily (TNFRSF) and Toll-like receptor (TLR) complexes promoting prosurvival and inflammatory signaling. RIPK1 also directly regulates caspase-8-mediated apoptosis or, if caspase-8 activity is blocked, RIPK3-MLKL-dependent necroptosis. We show that C57BL/6 Ripk1(-/-) mice die at birth of systemic inflammation that was not transferable by the hematopoietic compartment. However, Ripk1(-/-) progenitors failed to engraft lethally irradiated hosts properly. Blocking TNF reversed this defect in emergency hematopoiesis but, surprisingly, Tnfr1 deficiency did not prevent inflammation in Ripk1(-/-) neonates. Deletion of Ripk3 or Mlkl, but not Casp8, prevented extracellular release of the necroptotic DAMP, IL-33, and reduced Myd88-dependent inflammation. Reduced inflammation in the Ripk1(-/-)Ripk3(-/-), Ripk1(-/-)Mlkl(-/-), and Ripk1(-/-)Myd88(-/-) mice prevented neonatal lethality, but only Ripk1(-/-)Ripk3(-/-)Casp8(-/-) mice survived past weaning. These results reveal a key function for RIPK1 in inhibiting necroptosis and, thereby, a role in limiting, not only promoting, inflammation.


Nature Medicine | 2006

CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK.

Matthew J. Watt; Nicolas Dzamko; Walter G. Thomas; Stefan Rose-John; Matthias Ernst; David Carling; Bruce E. Kemp; Mark A. Febbraio; Gregory R. Steinberg

Ciliary neurotrophic factor (CNTF) induces weight loss and improves glucose tolerance in humans and rodents. CNTF is thought to act centrally by inducing hypothalamic neurogenesis to modulate food intake and peripherally by altering hepatic gene expression, in a manner similar to that of leptin. Here, we show that CNTF signals through the CNTFRα–IL-6R–gp130β receptor complex to increase fatty-acid oxidation and reduce insulin resistance in skeletal muscle by activating AMP-activated protein kinase (AMPK), independent of signaling through the brain. Thus, our findings further show that the antiobesogenic effects of CNTF in the periphery result from direct effects on skeletal muscle, and that these peripheral effects are not suppressed by diet-induced or genetic models of obesity, an essential requirement for the therapeutic treatment of obesity-related diseases.


Journal of Clinical Investigation | 2008

STAT3 and STAT1 mediate IL-11–dependent and inflammation-associated gastric tumorigenesis in gp130 receptor mutant mice

Matthias Ernst; Meri Najdovska; Dianne Grail; Therese Lundgren-May; Michael Buchert; Hazel Tye; Vance Matthews; Jane E. Armes; Prithi S. Bhathal; Norman R. Hughes; Eric G. Marcusson; James G. Karras; Songqing Na; Jonathon D. Sedgwick; Paul J. Hertzog; Brendan J. Jenkins

Deregulated activation of STAT3 is frequently associated with many human hematological and epithelial malignancies, including gastric cancer. While exaggerated STAT3 signaling facilitates an antiapoptotic, proangiogenic, and proproliferative environment for neoplastic cells, the molecular mechanisms leading to STAT3 hyperactivation remain poorly understood. Using the gp130(Y757F/Y757F) mouse model of gastric cancer, which carries a mutated gp130 cytokine receptor signaling subunit that cannot bind the negative regulator of cytokine signaling SOCS3 and is characterized by hyperactivation of the signaling molecules STAT1 and STAT3, we have provided genetic evidence that IL-11 promotes chronic gastric inflammation and associated tumorigenesis. Expression of IL-11 was increased in gastric tumors in gp130(Y757F/Y757F) mice, when compared with unaffected gastric tissue in wild-type mice, while gp130(Y757F/Y757F) mice lacking the IL-11 ligand-binding receptor subunit (IL-11Ralpha) showed normal gastric STAT3 activation and IL-11 expression and failed to develop gastric tumors. Furthermore, reducing STAT3 activity in gp130(Y757F/Y757F) mice, either genetically or by therapeutic administration of STAT3 antisense oligonucleotides, normalized gastric IL-11 expression and alleviated gastric tumor burden. Surprisingly, the genetic reduction of STAT1 expression also reduced gastric tumorigenesis in gp130(Y757F/Y757F) mice and coincided with reduced gastric inflammation and IL-11 expression. Collectively, our data have identified IL-11 as a crucial cytokine promoting chronic gastric inflammation and associated tumorigenesis mediated by excessive activation of STAT3 and STAT1.


Journal of Immunology | 2006

General Nature of the STAT3-Activated Anti-Inflammatory Response

Karim C. El Kasmi; Jeff Holst; Maryaline Coffre; Lisa A. Mielke; Antoine de Pauw; Nouara Lhocine; Amber M. Smith; Robert Rutschman; Deepak Kaushal; Yuhong Shen; Takashi Suda; Raymond P. Donnelly; Martin G. Myers; Warren S. Alexander; Dario A. A. Vignali; Stephanie S. Watowich; Matthias Ernst; Douglas J. Hilton; Peter J. Murray

Although many cytokine receptors generate their signals via the STAT3 pathway, the IL-10R appears unique in promoting a potent anti-inflammatory response (AIR) via STAT3 to antagonize proinflammatory signals that activate the innate immune response. We found that heterologous cytokine receptor systems that activate STAT3 but are naturally refractory (the IL-22R), or engineered to be refractory (the IL-6, leptin, and erythropoietin receptors), to suppressor of cytokine signaling-3-mediated inhibition activate an AIR indistinguishable from IL-10. We conclude that the AIR is a generic cytokine signaling pathway dependent on STAT3 but not unique to the IL-10R.


Cell Division | 2010

Stat3: linking inflammation to epithelial cancer - more than a "gut" feeling?

Andrew G. Jarnicki; Tracy Putoczki; Matthias Ernst

Inflammation is an important environmental factor that promotes tumourigenesis and the progression of established cancerous lesions, and recent studies have started to dissect the mechanisms linking the two pathologies. These inflammatory and infectious conditions trigger immune and stromal cell release of soluble mediators which facilitate survival and proliferation of tumour cells in a paracrine manner. In addition, (epi-)genetic mutations affecting oncogenes, tumour-suppressor genes, chromosomal rearrangements and amplifications trigger the release of inflammatory mediators within the tumour microenvironment to promote neoplastic growth in an autocrine manner. These two pathways converge in tumour cells and result in activation of the latent signal transducer and activator of transcription 3 (Stat3) which mediates a transcriptional response favouring survival, proliferation and angiogenesis. The abundance of cytokines that activate Stat3 within the tumour microenvironment, which comprises of members of the interleukin (IL) IL6, IL10 and IL17/23 families, underpins a signaling network that simultaneously promotes the growth of neoplastic epithelium, fuels inflammation and suppresses the hosts anti-tumour immune response. Accordingly, aberrant and persistent Stat3 activation is a frequent observation in human cancers of epithelial origin and is often associated with poor outcome.Here we summarize insights gained from mice harbouring mutations in components of the Stat3 signaling cascade and in particular of gp130, the shared receptor for the IL6 family of cytokines. We focus on the various feed-back and feed-forward loops in which Stat3 provides the signaling node in cells of the tumour and its microenvironment thereby functionally linking excessive inflammation to neoplastic growth. Although these observations are particularly pertinent to gastrointestinal tumours, we suggest that the tumours addiction to persistent Stat3 activation is likely to also impact on other epithelial cell-derived cancers. These insights provide clues to the judicious interference of the gp130/Stat3 signaling cascade in therapeutically targeting cancer.

Collaboration


Dive into the Matthias Ernst's collaboration.

Top Co-Authors

Avatar

Tracy Putoczki

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Brendan J. Jenkins

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Michael Buchert

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Joan K. Heath

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashleigh R. Poh

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dianne Grail

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge