Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias Farlik is active.

Publication


Featured researches published by Matthias Farlik.


Cell Reports | 2015

Single-Cell DNA Methylome Sequencing and Bioinformatic Inference of Epigenomic Cell-State Dynamics

Matthias Farlik; Nathan C. Sheffield; Angelo Nuzzo; Paul Datlinger; Andreas Schönegger; Johanna Klughammer; Christoph Bock

Summary Methods for single-cell genome and transcriptome sequencing have contributed to our understanding of cellular heterogeneity, whereas methods for single-cell epigenomics are much less established. Here, we describe a whole-genome bisulfite sequencing (WGBS) assay that enables DNA methylation mapping in very small cell populations (μWGBS) and single cells (scWGBS). Our assay is optimized for profiling many samples at low coverage, and we describe a bioinformatic method that analyzes collections of single-cell methylomes to infer cell-state dynamics. Using these technological advances, we studied epigenomic cell-state dynamics in three in vitro models of cellular differentiation and pluripotency, where we observed characteristic patterns of epigenome remodeling and cell-to-cell heterogeneity. The described method enables single-cell analysis of DNA methylation in a broad range of biological systems, including embryonic development, stem cell differentiation, and cancer. It can also be used to establish composite methylomes that account for cell-to-cell heterogeneity in complex tissue samples.


Science | 2016

Specification of Tissue-resident Macrophages During Organogenesis

Elvira Mass; Ivan Ballesteros; Matthias Farlik; Florian Halbritter; Patrick Günther; Lucile Crozet; Christian E. Jacome-Galarza; Kristian Händler; Johanna Klughammer; Yasuhiro Kobayashi; Elisa Gomez-Perdiguero; Joachim L. Schultze; Marc Beyer; Christoph Bock; Frederic Geissmann

INTRODUCTION Embryonic development and tissue homeostasis depend on cooperation between specialized cell types. Resident macrophages are professional phagocytes that survey their surroundings; eliminate unfit cells, microorganisms, and metabolic waste; and produce a large range of bioactive molecules and growth factors. Resident macrophages also serve tissue-specific purposes: For example, microglia in the central nervous system support neuronal circuit development, Kupffer cells scavenge blood particles and dying red blood cells in the liver, and alveolar macrophages uptake surfactant and remove airborne pollutants and microbes from the airways. Resident macrophage diversity in adult mice is reflected in tissue-specific gene expression profiles, which may be due to responses to specific cues from their microenvironment, different developmental processes, and the contribution of distinct progenitors cell types. Altogether, the mechanisms responsible for the generation of tissue-resident macrophage diversity remain unclear. RATIONALE Tissue-resident macrophages originate, at least in part, from mesodermal erythro-myeloid progenitors (EMPs) from the yolk sac, which invade the embryo proper at the onset of organogenesis. These tissue-resident macrophages are also self-maintained in postnatal tissues, independently of definitive hematopoietic stem cells (HSCs) in a steady state. We therefore hypothesized that resident macrophages represent a founding cell type within most organ anlagen. In this model, the generation of macrophage diversity, as observed in the tissues of postnatal mice, may be integral to organogenesis. RESULTS To test this hypothesis and explore the molecular basis of macrophage diversity in mammals, we performed a spatiotemporal analysis of macrophage development in mice, from embryonic day 9 (E9) to 3 weeks after birth. Unbiased single-cell RNA sequencing (RNA-seq) analysis of CD45+ cells, combined with RNA-seq analyses of sorted cell populations, genetic fate mapping, and in situ analyses, revealed that EMPs give rise to a population of premacrophages (pMacs) that colonize the whole embryo from E9.5, as they acquire a core macrophage differentiation program that includes pattern recognition, scavengers, and cytokine receptors. The chemokine receptor Cx3cr1 is up-regulated in pMacs and is important for embryo colonization, which is delayed in Cx3cr1-deficient embryos. Fate mapping of pMacs using a Tnfrsf11a–Cre reporter labels homogeneously fetal and adult tissue-resident macrophages but not HSCs and their progeny. Transcriptional regulators that identify postnatal tissue-resident macrophages in the brain, liver, kidney, skin, and lung were specifically up-regulated immediately after colonization. These dynamic changes mark the onset of diversification into adult macrophages. We identified Id3 as a Kupffer cell–specific transcriptional regulator. Deletion of Id3 in pMacs resulted in Kupffer cell deficiency but did not affect development of microglia and kidney macrophages. CONCLUSION Our study shows that EMP-derived precursors colonize embryonic tissues and simultaneously acquire a full core macrophage program. This is followed by their diversification into tissue-specific macrophages during organogenesis, likely via the expression of distinct sets of transcriptional regulators. These results indicate that differentiation of tissue-resident macrophages is an integral part of organogenesis and identify a spatiotemporal molecular road map for the generation of macrophage diversity in vivo. Our findings provide a conceptual framework to analyze and understand the consequence(s) of genetic variation for macrophage contribution to development, homeostasis, and disease pathogenesis in different tissues and will support efforts to differentiate specialized macrophages in vitro. Specification of tissue-resident macrophages. Erythro-myeloid progenitors (EMPs) from the yolk sac colonize the fetal liver and give rise to macrophage precursors (pMacs) that acquire a core macrophage transcriptional program and colonize the embryo from E9.5 in a Cx3cr1-dependent manner (green arrows). Specification of F4/80+ resident macrophages (brown arrows), starting from E10.25, is initiated by the expression of tissue-specific transcriptional regulators. Id3 (red) is important for Kupffer cell development. Transcription factors noted in blue have been shown to be important for the differentiation or the maintenance of the corresponding macrophage subsets. MΦ, macrophage. Tissue-resident macrophages support embryonic development and tissue homeostasis and repair. The mechanisms that control their differentiation remain unclear. We report here that erythro-myeloid progenitors in mice generate premacrophages (pMacs) that simultaneously colonize the whole embryo from embryonic day 9.5 in a chemokine-receptor–dependent manner. The core macrophage program initiated in pMacs is rapidly diversified as expression of transcriptional regulators becomes tissue-specific in early macrophages. This process appears essential for macrophage specification and maintenance, as inactivation of Id3 impairs the development of liver macrophages and results in selective Kupffer cell deficiency in adults. We propose that macrophage differentiation is an integral part of organogenesis, as colonization of organ anlagen by pMacs is followed by their specification into tissue macrophages, hereby generating the macrophage diversity observed in postnatal tissues.


Immunity | 2010

Nonconventional Initiation Complex Assembly by STAT and NF-κB Transcription Factors Regulates Nitric Oxide Synthase Expression

Matthias Farlik; Benjamin Reutterer; Christian Schindler; Florian R. Greten; Claus Vogl; Mathias Müller; Thomas Decker

Summary Transcriptional regulation of the Nos2 gene encoding inducible nitric oxide synthase (iNOS) requires type I interferon (IFN-I) signaling and additional signals emanating from pattern recognition receptors. Here we showed sequential and cooperative contributions of the transcription factors ISGF3 (a complex containing STAT1, STAT2, and IRF9 subunits) and NF-κB to the transcriptional induction of the Nos2 gene in macrophages infected with the intracellular bacterial pathogen Listeria monocytogenes. NF-κB preceded ISGF3 at the Nos2 promoter and generated a transcriptional memory effect by depositing basal transcription factor TFIIH with the associated CDK7 kinase for serine 5 phosphorylation of the RNA polymerase II (pol II) carboxyterminal domain (CTD). Subsequent to TFIIH deposition by NF-κB, ISGF3 attracted the pol II enzyme and phosphorylation at CTD S5 occurred. Thus, STATs and NF-κB cooperate through pol II promoter recruitment and the phosphorylation of its CTD, respectively, as a prerequisite for productive elongation of iNOS mRNA.


Cell | 2017

Artemisinins Target GABAA Receptor Signaling and Impair α Cell Identity

Jin Li; Tamara Casteels; Thomas Frogne; Camilla Ingvorsen; Christian Honoré; Monica Courtney; Kilian Huber; Nicole Schmitner; Robin A. Kimmel; Roman A. Romanov; Caterina Sturtzel; Charles-Hugues Lardeau; Johanna Klughammer; Matthias Farlik; Sara Sdelci; Andhira Vieira; Fabio Avolio; François Briand; Igor Baburin; Peter Májek; Florian M. Pauler; Thomas Penz; Alexey Stukalov; Manuela Gridling; Katja Parapatics; Charlotte Barbieux; Ekaterine Berishvili; Andreas Spittler; Jacques Colinge; Keiryn L. Bennett

Summary Type 1 diabetes is characterized by the destruction of pancreatic β cells, and generating new insulin-producing cells from other cell types is a major aim of regenerative medicine. One promising approach is transdifferentiation of developmentally related pancreatic cell types, including glucagon-producing α cells. In a genetic model, loss of the master regulatory transcription factor Arx is sufficient to induce the conversion of α cells to functional β-like cells. Here, we identify artemisinins as small molecules that functionally repress Arx by causing its translocation to the cytoplasm. We show that the protein gephyrin is the mammalian target of these antimalarial drugs and that the mechanism of action of these molecules depends on the enhancement of GABAA receptor signaling. Our results in zebrafish, rodents, and primary human pancreatic islets identify gephyrin as a druggable target for the regeneration of pancreatic β cell mass from α cells.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Distinct modes of action applied by transcription factors STAT1 and IRF1 to initiate transcription of the IFN-γ-inducible gbp2 gene

Katrin Ramsauer; Matthias Farlik; Gordin Zupkovitz; Christian Seiser; Andrea Kröger; Hansjörg Hauser; Thomas Decker

A subgroup of genes induced by IFN-γ requires both STAT1 and IRF1 for transcriptional activation. Using WT, stat1−/−, or irf1−/− cells, we analyzed the changes induced by IFN-γ in gbp2 promoter chromatin. STAT1 associated with the promoter independently of IRF1 and played an essential role in the ordered recruitment of the coactivator/histone acetyl transferase CREB-binding protein (CBP) and the histone deacetylase HDAC1. Hyperacetylation of histone 4 also required STAT1. Phosphorylation at S727 in the transactivating domain increased transcriptional activity of STAT1. In cells expressing a STAT1S727A-mutant CBP recruitment, histone 4 hyperacetylation and RNA polymerase II association with the gbp2 promoter were strongly reduced. IRF1 association with the gbp2 promoter followed that of STAT1, but STAT1 association with DNA or histone hyperacetylation were not necessary for IRF1 binding. RNA polymerase II association with the gbp2 promoter required both STAT1 and IRF1, suggesting that both proteins mediate essential steps in transcriptional activation. IRF1, but not STAT1, was found to coimmunoprecipitate with RNA polymerase II. Together, the data support the assumption that the main role of STAT1 in activating gbp2 transcription is to provide transcriptionally competent chromatin, whereas the function of IRF1 may lie in directly contacting RNA polymerase II-containing transcriptional complexes.


EMBO Reports | 2016

Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types

Jin Li; Johanna Klughammer; Matthias Farlik; Thomas Penz; Andreas Spittler; Charlotte Barbieux; Ekaterine Berishvili; Christoph Bock; Stefan Kubicek

Pancreatic islets of Langerhans contain several specialized endocrine cell types, which are commonly identified by the expression of single marker genes. However, the established marker genes cannot capture the complete spectrum of cellular heterogeneity in human pancreatic islets, and existing bulk transcriptome datasets provide averages across several cell populations. To dissect the cellular composition of the human pancreatic islet and to establish transcriptomes for all major cell types, we performed single‐cell RNA sequencing on 70 cells sorted from human primary tissue. We used this dataset to validate previously described marker genes at the single‐cell level and to identify specifically expressed transcription factors for all islet cell subtypes. All data are available for browsing and download, thus establishing a useful resource of single‐cell expression profiles for endocrine cells in human pancreatic islets.


Nature Neuroscience | 2017

Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes

Roman A. Romanov; Amit Zeisel; Joanne Bakker; Fatima Girach; Arash Hellysaz; Raju Tomer; Alán Alpár; Jan Mulder; Frédéric Clotman; Erik Keimpema; Brian Hsueh; Ailey K. Crow; Henrik Martens; Christian Schwindling; Daniela Calvigioni; Jaideep S. Bains; Zoltán Máté; Gábor Szabó; Yuchio Yanagawa; Ming-Dong Zhang; André F. Rendeiro; Matthias Farlik; Mathias Uhlén; Peer Wulff; Christoph Bock; Christian Broberger; Karl Deisseroth; Tomas Hökfelt; Sten Linnarsson; Tamas L. Horvath

The hypothalamus contains the highest diversity of neurons in the brain. Many of these neurons can co-release neurotransmitters and neuropeptides in a use-dependent manner. Investigators have hitherto relied on candidate protein-based tools to correlate behavioral, endocrine and gender traits with hypothalamic neuron identity. Here we map neuronal identities in the hypothalamus by single-cell RNA sequencing. We distinguished 62 neuronal subtypes producing glutamatergic, dopaminergic or GABAergic markers for synaptic neurotransmission and harboring the ability to engage in task-dependent neurotransmitter switching. We identified dopamine neurons that uniquely coexpress the Onecut3 and Nmur2 genes, and placed these in the periventricular nucleus with many synaptic afferents arising from neuromedin S+ neurons of the suprachiasmatic nucleus. These neuroendocrine dopamine cells may contribute to the dopaminergic inhibition of prolactin secretion diurnally, as their neuromedin S+ inputs originate from neurons expressing Per2 and Per3 and their tyrosine hydroxylase phosphorylation is regulated in a circadian fashion. Overall, our catalog of neuronal subclasses provides new understanding of hypothalamic organization and function.


Cell Stem Cell | 2016

DNA Methylation Dynamics of Human Hematopoietic Stem Cell Differentiation

Matthias Farlik; Florian Halbritter; Fabian Müller; Fizzah Choudry; Peter Ebert; Johanna Klughammer; Samantha Farrow; Antonella Santoro; Valerio Ciaurro; Anthony Mathur; Rakesh Uppal; Hendrik G. Stunnenberg; Willem H. Ouwehand; Elisa Laurenti; Thomas Lengauer; Mattia Frontini; Christoph Bock

Summary Hematopoietic stem cells give rise to all blood cells in a differentiation process that involves widespread epigenome remodeling. Here we present genome-wide reference maps of the associated DNA methylation dynamics. We used a meta-epigenomic approach that combines DNA methylation profiles across many small pools of cells and performed single-cell methylome sequencing to assess cell-to-cell heterogeneity. The resulting dataset identified characteristic differences between HSCs derived from fetal liver, cord blood, bone marrow, and peripheral blood. We also observed lineage-specific DNA methylation between myeloid and lymphoid progenitors, characterized immature multi-lymphoid progenitors, and detected progressive DNA methylation differences in maturing megakaryocytes. We linked these patterns to gene expression, histone modifications, and chromatin accessibility, and we used machine learning to derive a model of human hematopoietic differentiation directly from DNA methylation data. Our results contribute to a better understanding of human hematopoietic stem cell differentiation and provide a framework for studying blood-linked diseases.


Biotechnology and Bioengineering | 2016

Comprehensive genome and epigenome characterization of CHO cells in response to evolutionary pressures and over time

Julia Feichtinger; Inmaculada Hernandez; Christoph Fischer; Michael Hanscho; Norbert Auer; Matthias Hackl; Vaibhav Jadhav; Martina Baumann; Peter M. Krempl; Christian Schmidl; Matthias Farlik; Michael Schuster; Angelika Merkel; Andreas Sommer; Simon Heath; Daniel Rico; Christoph Bock; Gerhard G. Thallinger; Nicole Borth

The most striking characteristic of CHO cells is their adaptability, which enables efficient production of proteins as well as growth under a variety of culture conditions, but also results in genomic and phenotypic instability. To investigate the relative contribution of genomic and epigenetic modifications towards phenotype evolution, comprehensive genome and epigenome data are presented for six related CHO cell lines, both in response to perturbations (different culture conditions and media as well as selection of a specific phenotype with increased transient productivity) and in steady state (prolonged time in culture under constant conditions). Clear transitions were observed in DNA‐methylation patterns upon each perturbation, while few changes occurred over time under constant conditions. Only minor DNA‐methylation changes were observed between exponential and stationary growth phase; however, throughout a batch culture the histone modification pattern underwent continuous adaptation. Variation in genome sequence between the six cell lines on the level of SNPs, InDels, and structural variants is high, both upon perturbation and under constant conditions over time. The here presented comprehensive resource may open the door to improved control and manipulation of gene expression during industrial bioprocesses based on epigenetic mechanisms. Biotechnol. Bioeng. 2016;113: 2241–2253.


Nature Communications | 2016

Chromatin accessibility maps of chronic lymphocytic leukaemia identify subtype-specific epigenome signatures and transcription regulatory networks.

André F. Rendeiro; Christian Schmidl; Jonathan C. Strefford; Renata Walewska; Zadie Davis; Matthias Farlik; David Oscier; Christoph Bock

Chronic lymphocytic leukaemia (CLL) is characterized by substantial clinical heterogeneity, despite relatively few genetic alterations. To provide a basis for studying epigenome deregulation in CLL, here we present genome-wide chromatin accessibility maps for 88 CLL samples from 55 patients measured by the ATAC-seq assay. We also performed ChIPmentation and RNA-seq profiling for ten representative samples. Based on the resulting data set, we devised and applied a bioinformatic method that links chromatin profiles to clinical annotations. Our analysis identified sample-specific variation on top of a shared core of CLL regulatory regions. IGHV mutation status—which distinguishes the two major subtypes of CLL—was accurately predicted by the chromatin profiles and gene regulatory networks inferred for IGHV-mutated versus IGHV-unmutated samples identified characteristic differences between these two disease subtypes. In summary, we discovered widespread heterogeneity in the chromatin landscape of CLL, established a community resource for studying epigenome deregulation in leukaemia and demonstrated the feasibility of large-scale chromatin accessibility mapping in cancer cohorts and clinical research.

Collaboration


Dive into the Matthias Farlik's collaboration.

Top Co-Authors

Avatar

Christoph Bock

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Johanna Klughammer

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Thomas Decker

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar

Claus Vogl

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Veronika Sexl

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mathias Müller

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

André F. Rendeiro

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Paul Datlinger

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Stefan Kubicek

Austrian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge