Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias G. Steiger is active.

Publication


Featured researches published by Matthias G. Steiger.


Frontiers in Microbiology | 2013

Biochemistry of microbial itaconic acid production

Matthias G. Steiger; Marzena L. Blumhoff; Diethard Mattanovich; Michael Sauer

Itaconic acid is an unsaturated dicarbonic acid which has a high potential as a biochemical building block, because it can be used as a monomer for the production of a plethora of products including resins, plastics, paints, and synthetic fibers. Some Aspergillus species, like A. itaconicus and A. terreus, show the ability to synthesize this organic acid and A. terreus can secrete significant amounts to the media (>80 g/L). However, compared with the citric acid production process (titers >200 g/L) the achieved titers are still low and the overall process is expensive because purified substrates are required for optimal productivity. Itaconate is formed by the enzymatic activity of a cis-aconitate decarboxylase (CadA) encoded by the cadA gene in A. terreus. Cloning of the cadA gene into the citric acid producing fungus A. niger showed that it is possible to produce itaconic acid also in a different host organism. This review will describe the current status and recent advances in the understanding of the molecular processes leading to the biotechnological production of itaconic acid.


Metabolic Engineering | 2014

Model based engineering of Pichia pastoris central metabolism enhances recombinant protein production

Justyna Nocon; Matthias G. Steiger; Martin Pfeffer; Seung Bum Sohn; Tae Yong Kim; Michael Maurer; Hannes Rußmayer; Stefan Pflügl; Magnus Ask; Christina Haberhauer-Troyer; Karin Ortmayr; Stephan Hann; Gunda Koellensperger; Brigitte Gasser; Sang Yup Lee; Diethard Mattanovich

The production of recombinant proteins is frequently enhanced at the levels of transcription, codon usage, protein folding and secretion. Overproduction of heterologous proteins, however, also directly affects the primary metabolism of the producing cells. By incorporation of the production of a heterologous protein into a genome scale metabolic model of the yeast Pichia pastoris, the effects of overproduction were simulated and gene targets for deletion or overexpression for enhanced productivity were predicted. Overexpression targets were localized in the pentose phosphate pathway and the TCA cycle, while knockout targets were found in several branch points of glycolysis. Five out of 9 tested targets led to an enhanced production of cytosolic human superoxide dismutase (hSOD). Expression of bacterial β-glucuronidase could be enhanced as well by most of the same genetic modifications. Beneficial mutations were mainly related to reduction of the NADP/H pool and the deletion of fermentative pathways. Overexpression of the hSOD gene itself had a strong impact on intracellular fluxes, most of which changed in the same direction as predicted by the model. In vivo fluxes changed in the same direction as predicted to improve hSOD production. Genome scale metabolic modeling is shown to predict overexpression and deletion mutants which enhance recombinant protein production with high accuracy.


Nature Communications | 2015

Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan

Markus Schosserer; Nadege Minois; Tina B. Angerer; Manuela Amring; Hanna Dellago; Eva Harreither; Alfonso Calle-Perez; Andreas Pircher; Matthias P. Gerstl; Sigrid Pfeifenberger; Clemens Brandl; Markus Sonntagbauer; Albert Kriegner; Angela Linder; Andreas Weinhäusel; Thomas Mohr; Matthias G. Steiger; Diethard Mattanovich; Mark Rinnerthaler; Thomas Karl; Sunny Sharma; Karl-Dieter Entian; Martin Kos; Michael Breitenbach; Iain B. H. Wilson; Norbert Polacek; Regina Grillari-Voglauer; Lore Breitenbach-Koller; Johannes Grillari

Several pathways modulating longevity and stress resistance converge on translation by targeting ribosomal proteins or initiation factors, but whether this involves modifications of ribosomal RNA is unclear. Here, we show that reduced levels of the conserved RNA methyltransferase NSUN5 increase the lifespan and stress resistance in yeast, worms and flies. Rcm1, the yeast homologue of NSUN5, methylates C2278 within a conserved region of 25S rRNA. Loss of Rcm1 alters the structural conformation of the ribosome in close proximity to C2278, as well as translational fidelity, and favours recruitment of a distinct subset of oxidative stress-responsive mRNAs into polysomes. Thus, rather than merely being a static molecular machine executing translation, the ribosome exhibits functional diversity by modification of just a single rRNA nucleotide, resulting in an alteration of organismal physiological behaviour, and linking rRNA-mediated translational regulation to modulation of lifespan, and differential stress response.


Metabolic Engineering | 2013

Targeting enzymes to the right compartment: metabolic engineering for itaconic acid production by Aspergillus niger.

Marzena L. Blumhoff; Matthias G. Steiger; Diethard Mattanovich; Michael Sauer

Itaconic acid is an unsaturated dicarboxylic acid which has a high potential as a biochemical building block. It can be microbially produced from some Aspergillus species, such as Aspergillus itaconicus and Aspergillus terreus. However, the achieved titers are significantly lower as compared to the citric acid production by A. niger. Heterologous expression of cis-aconitate decarboxylase in A. niger leads to the accumulation of small amounts of itaconic acid. Additional expression of aconitase, the second enzyme metabolically linking citric acid and itaconic acid improves productivity. However, proper organelle targeting of the enzymes appears to be an important point to consider. Here we compare the mitochondrial expression with the cytosolic expression of cis-aconitate decarboxylase or aconitase in A. niger. Heterologous expression of both enzymes in the mitochondria doubles the productivity compared to strains which express the enzymes in the cytosol. It is essential to target enzymes to the correct compartment in order to establish a proper flux through a compartmentalized pathway.


Biotechnology Journal | 2014

In Pichia pastoris, growth rate regulates protein synthesis and secretion, mating and stress response

Corinna Rebnegger; Alexandra B. Graf; Minoska Valli; Matthias G. Steiger; Brigitte Gasser; Michael Maurer; Diethard Mattanovich

Protein production in yeasts is related to the specific growth rate μ. To elucidate on this correlation, we studied the transcriptome of Pichia pastoris at different specific growth rates by cultivating a strain secreting human serum albumin at μ = 0.015 to 0.15 h–1 in glucose-limited chemostats. Genome-wide regulation revealed that translation-related as well as mitochondrial genes were upregulated with increasing μ, while autophagy and other proteolytic processes, carbon source-responsive genes and other targets of the TOR pathway as well as many transcriptional regulators were downregulated at higher μ. Mating and sporulation genes were most active at intermediate μ of 0.05 and 0.075 h–1. At very slow growth (μ = 0.015 h–1) gene regulation differs significantly, affecting many transporters and glucose sensing. Analysis of a subset of genes related to protein folding and secretion reveals that unfolded protein response targets such as translocation, endoplasmic reticulum genes, and cytosolic chaperones are upregulated with increasing growth rate while proteolytic degradation of secretory proteins is downregulated. We conclude that a high μ positively affects specific protein secretion rates by acting on multiple cellular processes.


Journal of Separation Science | 2012

U13C cell extract of Pichia pastoris – a powerful tool for evaluation of sample preparation in metabolomics

Stefan Neubauer; Christina Haberhauer-Troyer; Kristaps Klavins; Hannes Russmayer; Matthias G. Steiger; Brigitte Gasser; Michael Sauer; Diethard Mattanovich; Stephan Hann; Gunda Koellensperger

Quantitative metabolic profiling is preceded by dedicated sample preparation protocols. These multistep procedures require detailed optimization and thorough validation. In this work, a uniformly (13)C-labeled (U(13)C) cell extract was used as a tool to evaluate the recoveries and repeatability precisions of the cell extraction and the extract treatment. A homogenous set of biological replicates (n = 15 samples of Pichia pastoris) was prepared for these fundamental experiments. A range of less than 30 intracellular metabolites, comprising amino acids, nucleotides, and organic acids were measured both in monoisotopic (12)C and U(13)C form by LC-MS/MS employing triple quadrupole MS, reversed phase chromatography, and HILIC. Recoveries of the sample preparation procedure ranging from 60 to 100% and repeatability precisions below 10% were obtained for most of the investigated metabolites using internal standardization approaches. Uncertainty budget calculations revealed that for this complex quantification task, in the optimum case, total combined uncertainty of 12% could be achieved. The optimum case would be represented by metabolites, easy to extract from yeast with high and precise recovery. In other cases the total combined uncertainty was significantly higher.


Applied Microbiology and Biotechnology | 2016

Increasing pentose phosphate pathway flux enhances recombinant protein production in Pichia pastoris

Justyna Nocon; Matthias G. Steiger; Teresa Mairinger; Jonas Hohlweg; Hannes Rußmayer; Stephan Hann; Brigitte Gasser; Diethard Mattanovich

Production of heterologous proteins in Pichia pastoris (syn. Komagataella sp.) has been shown to exert a metabolic burden on the host metabolism. This burden is associated with metabolite drain, which redirects nucleotides and amino acids from primary metabolism. On the other hand, recombinant protein production affects energy and redox homeostasis of the host cell. In a previous study, we have demonstrated that overexpression of single genes of the oxidative pentose phosphate pathway (PPP) had a positive influence on recombinant production of cytosolic human superoxide dismutase (hSOD). In this study, different combinations of these genes belonging to the oxidative PPP were generated and analyzed. Thereby, a 3.8-fold increase of hSOD production was detected when glucose-6-phosphate dehydrogenase (ZWF1) and 6-gluconolactonase (SOL3) were simultaneously overexpressed, while the combinations of other genes from PPP had no positive effect on protein production. By measuring isotopologue patterns of 13C-labelled metabolites, we could detect an upshift in the flux ratio of PPP to glycolysis upon ZWF1 and SOL3 co-overexpression, as well as increased levels of 6-phosphogluconate. The substantial improvement of hSOD production by ZWF1 and SOL3 co-overexpression appeared to be connected to an increase in PPP flux. In conclusion, we show that overexpression of SOL3 together with ZWF1 enhanced both the PPP flux ratio and hSOD accumulation, providing evidence that in P. pastoris Sol3 limits the flux through PPP and recombinant protein production.


Biotechnology Journal | 2015

Enhanced glutathione production by evolutionary engineering of Saccharomyces cerevisiae strains

Anett Patzschke; Matthias G. Steiger; Caterina Holz; Christine Lang; Diethard Mattanovich; Michael Sauer

Glutathione is an important natural tripeptide mainly used because of its antioxidative properties. Commercial glutathione is microbially synthesized by yeasts and the growing demand requires the development of new production strains. An adaptive laboratory evolution strategy using acrolein as a selection agent was employed to obtain strains with an enhanced glutathione accumulation phenotype accompanied by an acrolein resistance phenotype. Two particularly interesting isolates were obtained: one with a high volumetric productivity for glutathione reaching 8.3 mgglutathione/L h, which is twice as high as the volumetric productivity of its parental strain. This strain reached an elevated intracellular glutathione content of 3.9%. A second isolate with an even higher acrolein tolerance exhibited a lower volumetric productivity of 5.8 mgglutathione/L h due to a growth phenotype. However, this evolved strain accumulated glutathione in 3.3‐fold higher concentration compared to its parental strain and reached a particularly high glutathione content of almost 6%. The presented results demonstrate that acrolein is a powerful selection agent to obtain high glutathione accumulation strains in an adaptive laboratory evolution experiment.


Microbial Cell Factories | 2015

Methanol regulated yeast promoters: production vehicles and toolbox for synthetic biology

Brigitte Gasser; Matthias G. Steiger; Diethard Mattanovich

Promoters are indispensable elements of a standardized parts collection for synthetic biology. Regulated promoters of a wide variety of well-defined induction ratios and expression strengths are highly interesting for many applications. Exemplarily, we discuss the application of published genome scale transcriptomics data for the primary selection of methanol inducible promoters of the yeast Pichia pastoris (Komagataella sp.). Such a promoter collection can serve as an excellent toolbox for cell and metabolic engineering, and for gene expression to produce heterologous proteins.


Analytical Chemistry | 2015

Gas Chromatography-Quadrupole Time-of-Flight Mass Spectrometry-Based Determination of Isotopologue and Tandem Mass Isotopomer Fractions of Primary Metabolites for (13)C-Metabolic Flux Analysis.

Teresa Mairinger; Matthias G. Steiger; Justyna Nocon; Diethard Mattanovich; Gunda Koellensperger; Stephan Hann

For the first time an analytical work flow based on accurate mass gas chromatography-quadrupole time-of-flight mass spectrometry (GC-QTOFMS) with chemical ionization for analysis providing a comprehensive picture of (13)C distribution along the primary metabolism is elaborated. The method provides a powerful new toolbox for (13)C-based metabolic flux analysis, which is an emerging strategy in metabolic engineering. In this field, stable isotope tracer experiments based on, for example, (13)C are central for providing characteristic patterns of labeled metabolites, which in turn give insights into the regulation of metabolic pathway kinetics. The new method enables the analysis of isotopologue fractions of 42 free intracellular metabolites within biotechnological samples, while tandem mass isotopomer information is also accessible for a large number of analytes. Hence, the method outperforms previous approaches in terms of metabolite coverage, while also providing rich isotopomer information for a significant number of key metabolites. Moreover, the established work flow includes novel evaluation routines correcting for isotope interference of naturally distributed elements, which is crucial following derivatization of metabolites. Method validation in terms of trueness, precision, and limits of detection was performed, showing excellent analytical figures of merit with an overall maximum bias of 5.8%, very high precision for isotopologue and tandem mass isotopomer fractions representing >10% of total abundance, and absolute limits of detection in the femtomole range. The suitability of the developed method is demonstrated on a flux experiment of Pichia pastoris employing two different tracers, i.e., 1,6(13)C2-glucose and uniformly labeled (13)C-glucose.

Collaboration


Dive into the Matthias G. Steiger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert Kriegner

Austrian Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Andreas Weinhäusel

Austrian Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Maurer

Vienna University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge