Matthias Grauert
Boehringer Ingelheim
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthias Grauert.
Current Biology | 2007
Martin Steegmaier; Matthias Hoffmann; Anke Baum; Péter Lénárt; Mark Petronczki; Martin Krššák; Ulrich Gürtler; Pilar Garin-Chesa; Simone Lieb; Jens Juergen Quant; Matthias Grauert; Günther R. Adolf; Norbert Kraut; Jan-Michael Peters; Wolfgang J. Rettig
Fine-mapping of the cell-division cycle, notably the identification of mitotic kinase signaling pathways, provides novel opportunities for cancer-drug discovery. As a key regulator of multiple steps during mitotic progression across eukaryotic species, the serine/threonine-specific Polo-like kinase 1 (Plk1) is highly expressed in malignant cells and serves as a negative prognostic marker in specific human cancer types . Here, we report the discovery of a potent small-molecule inhibitor of mammalian Plk1, BI 2536, which inhibits Plk1 enzyme activity at low nanomolar concentrations. The compound potently causes a mitotic arrest and induces apoptosis in human cancer cell lines of diverse tissue origin and oncogenome signature. BI 2536 inhibits growth of human tumor xenografts in nude mice and induces regression of large tumors with well-tolerated intravenous dose regimens. In treated tumors, cells arrest in prometaphase, accumulate phosphohistone H3, and contain aberrant mitotic spindles. This mitotic arrest is followed by a surge in apoptosis, detectable by immunohistochemistry and noninvasive optical and magnetic resonance imaging. For addressing the therapeutic potential of Plk1 inhibition, BI 2536 has progressed into clinical studies in patients with locally advanced or metastatic cancers.
Biochemical Journal | 2007
Gopal P. Sapkota; Lorna Cummings; Felicity S. Newell; Christopher G. Armstrong; Jennifer Bain; Morten Frodin; Matthias Grauert; Matthias Hoffmann; Gisela Schnapp; Martin Steegmaier; Philip Cohen; Dario R. Alessi
Hormones and growth factors induce the activation of a number of protein kinases that belong to the AGC subfamily, including isoforms of PKA, protein kinase B (also known as Akt), PKC, S6K p70 (ribosomal S6 kinase), RSK (p90 ribosomal S6 kinase) and MSK (mitogen- and stress-activated protein kinase), which then mediate many of the physiological processes that are regulated by these extracellular agonists. It can be difficult to assess the individual functions of each AGC kinase because their substrate specificities are similar. Here we describe the small molecule BI-D1870, which inhibits RSK1, RSK2, RSK3 and RSK4 in vitro with an IC(50) of 10-30 nM, but does not signi-ficantly inhibit ten other AGC kinase members and over 40 other protein kinases tested at 100-fold higher concentrations. BI-D1870 is cell permeant and prevents the RSK-mediated phorbol ester- and EGF (epidermal growth factor)-induced phosphoryl-ation of glycogen synthase kinase-3beta and LKB1 in human embry-onic kidney 293 cells and Rat-2 cells. In contrast, BI-D1870 does not affect the agonist-triggered phosphorylation of substrates for six other AGC kinases. Moreover, BI-D1870 does not suppress the phorbol ester- or EGF-induced phosphorylation of CREB (cAMP-response-element-binding protein), consistent with the genetic evidence indicating that MSK, and not RSK, isoforms mediate the mitogen-induced phosphorylation of this transcription factor.
Clinical Cancer Research | 2009
Dorothea Rudolph; Martin Steegmaier; Matthias Hoffmann; Matthias Grauert; Anke Baum; Jens Juergen Quant; Christian Haslinger; Pilar Garin-Chesa; Günther R. Adolf
Purpose: Antimitotic chemotherapy remains a cornerstone of multimodality treatment for locally advanced and metastatic cancers. To identify novel mitosis-specific agents with higher selectivity than approved tubulin-binding agents (taxanes, Vinca alkaloids), we have generated inhibitors of Polo-like kinase 1, a target that functions predominantly in mitosis. Experimental Design: The first compound in this series, suitable for i.v. administration, has entered clinical development. To fully explore the potential of Polo-like kinase 1 inhibition in oncology, we have profiled additional compounds and now describe a novel clinical candidate. Results: BI 6727 is a highly potent (enzyme IC50 = 0.87 nmol/L, EC50 = 11-37 nmol/L on a panel of cancer cell lines) and selective dihydropteridinone with distinct properties. First, BI 6727 has a pharmacokinetic profile favoring sustained exposure of tumor tissues with a high volume of distribution and a long terminal half-life in mice (Vss = 7.6 L/kg, t1/2 = 46 h) and rats (Vss = 22 L/kg, t1/2 = 54 h). Second, BI 6727 has physicochemical and pharmacokinetic properties that allow in vivo testing of i.v. as well as oral formulations, adding flexibility to dosing schedules. Finally, BI 6727 shows marked antitumor activity in multiple cancer models, including a model of taxane-resistant colorectal cancer. With oral and i.v. routes of administration, the total weekly dose of BI 6727 is most relevant for efficacy, supporting the use of a variety of well-tolerated dosing schedules. Conclusion: These findings warrant further investigation of BI 6727 as a tailored antimitotic agent; clinical studies have been initiated.
European Journal of Pharmacology | 2010
Holger Rosenbrock; Gert Kramer; Scott Hobson; Eliza Koros; Marc Grundl; Matthias Grauert; Klaus G. Reymann; Ulrich H. Schröder
The NMDA (N-methyl-D-aspartate)-receptor is fundamentally involved in cognitive functions. Recent studies demonstrated a functional interaction between the metabotropic glutamate receptor 5 (mGlu(5) receptor) and the NMDA-receptor in neurons. In rat hippocampal slices, it was shown that activation of mGlu(5) receptor by a positive modulator in the presence of a subthreshold agonist concentration potentiated NMDA-receptor mediated currents and phosphorylation of intracellular signalling proteins. In the present study, we investigated the functional interaction of mGlu(5) receptor and NMDA-receptor by the selective mGlu(5) receptor positive modulator ADX-47273 in-vitro and in-vivo. In rat primary neurons, this compound potentiated Ca(2+) mobilization in the presence of a subthreshold concentration of the mGluR(1/5) agonist DHPG (0.3 microM) with an EC(50) of 0.28+/-0.05 microM. NMDA-induced Ca(2+)-mobilization in primary neurons could be potentiated when neurons were pre-stimulated with 1 microM ADX-47273 in the presence of 0.3 microM DHPG. The specific mGlu(5) receptor antagonist MPEP and the Src-family kinase inhibitor PP2 blocked this potentiation demonstrating the functional interaction of the NMDA-receptor and mGlu(5) receptor in neurons. Furthermore, ADX-47273 elicited an enhancement of NMDA-receptor dependent long-term potentiation in rat hippocampal slices that could be reversed by MPEP. After intraperitoneal administration to rats, ADX-47273 showed a dose-dependent reduction of NMDA-receptor antagonist (ketamine) induced hyperlocomotion, supporting the mechanistic interaction of the NMDA-receptor and mGlu(5) receptor in-vivo. In conclusion, these findings further support the idea of a functional interaction between the mGlu(5) receptor and NMDA-receptor, which may provide a pharmacological strategy for addressing CNS diseases with cognitive impairments linked to NMDA-receptor hypofunction.
Journal of Medicinal Chemistry | 2010
Gerald Juergen Roth; Armin Heckel; Trixi Brandl; Matthias Grauert; Stefan Hoerer; Joerg Kley; Gisela Schnapp; Patrick Baum; Detlev Mennerich; Andreas Schnapp; John Edward Park
Inhibition of transforming growth factor β (TGFβ) type I receptor (Alk5) offers a novel approach for the treatment of fibrotic diseases and cancer. Indolinones substituted in position 6 were identified as a new chemotype inhibiting TGFβRI concomitant with a low cross-reactivity among the human kinome. A subset of compounds showed additional inhibition of platelet-derived growth factor receptor alpha (PDGFRα), contributing to an interesting pharmacological profile. In contrast, p38 kinase, which is often inhibited by TGFβRI inhibitors, was not targeted by derivatives based on the indolinone chemotype. Guided by an X-ray structure of lead compound 5 (BIBF0775) soaked into the kinase domain of TGFβRI, optimization furnished potent and selective inhibitors of TGFβRI. Potent inhibition translated well into good inhibition of TGFβRI-mediated phosphorylation of Smad2/3, demonstrating efficacy in a cellular setting. Optimized compounds were extensively profiled on a 232-kinase panel and showed low cross-reactivities within the human kinome.
Journal of Receptors and Signal Transduction | 2002
Marko Kokic; Michael Honer; Lea J. Kessler; Matthias Grauert; Pius August Schubiger; Simon M. Ametamey
ABSTRACT A new benzomorphane derivative, [11C]methyl-BIII277CL, was evaluated as a potential radiotracer for visualizing the PCP-binding site of the N-methyl-D-aspartate (NMDA) receptor by positron emission tomography (PET). Methyl-BIII277CL was prepared by reacting the desmethyl compound (BIII277CL) with dimethylsulfate. The pharmacological profile of methyl-BIII277CL was determined by in vitro receptor-screening assays. At a concentration of 100 nM, methyl-BIII277CL showed a significant interaction with the PCP-binding site of the NMDA receptor (79% inhibition of specific binding) and the σ1-binding site (46% inhibition). In displacement assays using mice cortical membranes, methyl-BIII277CL displayed a high affinity at the PCP-binding site of the NMDA receptor (Ki = 49 ± 14 nmol/L) and a 130-fold lower interaction with the σ1-binding site (Ki = 6.35 ± 0.26 µmol/L). For saturation experiments and in vivo studies, methyl-BIII277CL was radiolabeled with 11C at the O-position of the desmethyl precursor (BIII277CL) using [11C]methyliodide with a specific activity of 35–70 GBq/µmol at the end of synthesis (EOS). In saturation assays using rat whole brain membranes [11C]methyl-BIII277CL showed a Kd of 6 ± 1 nmol/L and a Bmax of 670 ± 154 fmol/mg protein. Biodistribution and PET studies in rats and pigs, however, indicated a lack of specific binding and unfavorable pharmacokinetics. Kinetic modeling using the 1-tissue compartment model demonstrated for [11C]methyl-BIII277CL a low distribution volume (Dv = 0.98 mL/mLtissue) and very high values for the kinetic parameters K1 and k2 (K1 = 0.36 mL/mLtissue/min and k2 = 0.37 min−1) in pig cortex. [11C]methyl-BIII277CL, due to the lack of specificity in vivo, may not be a candidate for imaging the PCP-binding site of the NMDA receptor.
Archive | 2003
Matthias Hoffmann; Matthias Grauert; Trixi Brandl; Steffen Breitfelder; Christian Eickmeier; Martin Steegmaier; Gisela Schnapp; Anke Baum; Jens Juergen Quant; Flavio Solca; Florian Colbatzky
Archive | 2002
Matthias Hoffmann; Matthias Grauert; Steffen Breitfelder; Christian Eickmeier; Gerald Pohl; Thorsten Lehmann-Lintz; Norbert Redemann; Gisela Schnapp; Martin Steegmaier; Eckhart Bauer; Jens Juergen Quant
Archive | 2003
Matthias Hoffmann; Matthias Grauert; Trixi Brandl; Steffen Breitfelder; Christian Eickmeier; Martin Steegmaier; Gisela Schnapp; Anke Baum; Jens Juergen Quant; Flavio Solca; Florian Colbatzky
Archive | 2009
Matthias Hoffmann; Matthias Grauert; Thorsten Lehmann-Lintz; Martin Steegmaier; Flavio Solca; Norbert Redemann