Matthias Groh
Saarland University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthias Groh.
PLOS ONE | 2011
Li Zhang; Wenqiang Chang; Bin Sun; Matthias Groh; Andreas Speicher; Hong-Xiang Lou
The yeast-to-hypha transition plays a crucial role in the pathogenesis of C. albicans. Farnesol, a quorum sensing molecule (QSM) secreted by the fungal itself, could prevent the formation of hyphae and subsequently lead to the defect of biofilm formation. The DPP3, encoding phosphatase, is a key gene in regulating farnesol synthesis. In this study, we screened 24 bisbibenzyls and 2 bibenzyls that were isolated from bryophytes or chemically synthesized by using CLSI method for antifungal effect. Seven bisbibenzyls were found to have antifungal effects with IC80 less than 32 µg/ml, and among them, plagiochin F, isoriccardin C and BS-34 were found to inhibit the hyphae and biofilm formation of C. albicans in a dose-dependent manner. To uncover the underlying relationship between morphogenesis switch and QSM formation, we measured the farnesol production by HPLC-MS and quantified Dpp3 expression by detecting the fluorescent intensity of green fluorescent protein tagged strain using Confocal Laser Scanning microscopy and Multifunction Microplate Reader. The DPP3 transcripts were determined by real-time PCR. The data indicated that the bisbibenzyls exerted antifungal effects through stimulating the synthesis of farnesol via upregulation of Dpp3, suggesting a potential antifungal application of bisbibenzyls. In addition, our assay provides a novel, visual and convenient method to measure active compounds against morphogenesis switch.
Journal of Medicinal Chemistry | 2013
J. Henning Sahner; Christian Brengel; Michael P. Storz; Matthias Groh; Alberto Plaza; Rolf Müller; Rolf W. Hartmann
The present work deals with the optimization of an inhibitor of PqsD, an enzyme essential for Pseudomonas aeruginosa quorum sensing apparatus. Molecular docking studies, supported by biophysical methods (surface plasmon resonance, isothermal titration calorimetry, saturation transfer difference NMR), were used to illuminate the binding mode of the 5-aryl-ureidothiophene-2-carboxylic acids. Enabled to make profound predictions, structure-based optimization led to increased inhibitory potency. Finally a covalent inhibitor was obtained. Binding to the active site was confirmed by LC-ESI-MS and MALDI-TOF-MS experiments. Following this rational approach, potent PqsD inhibitors were efficiently developed within a short period of time. This example shows that a combination and careful application of in silico and biophysical methods represents a powerful complement to cocrystallography.
Journal of Medicinal Chemistry | 2013
Stefan Hinsberger; Kristina Hüsecken; Matthias Groh; Matthias Negri; Jörg Haupenthal; Rolf W. Hartmann
The bacterial RNA polymerase (RNAP) is a validated target for broad spectrum antibiotics. However, the efficiency of drugs is reduced by resistance. To discover novel RNAP inhibitors, a pharmacophore based on the alignment of described inhibitors was used for virtual screening. In an optimization process of hit compounds, novel derivatives with improved in vitro potency were discovered. Investigations concerning the molecular mechanism of RNAP inhibition reveal that they prevent the protein-protein interaction (PPI) between σ(70) and the RNAP core enzyme. Besides of reducing RNA formation, the inhibitors were shown to interfere with bacterial lipid biosynthesis. The compounds were active against Gram-positive pathogens and revealed significantly lower resistance frequencies compared to clinically used rifampicin.
European Journal of Medicinal Chemistry | 2014
Stefan Hinsberger; Johannes C. de Jong; Matthias Groh; Jörg Haupenthal; Rolf W. Hartmann
Targeting PqsD is a promising novel approach to disrupt bacterial cell-to-cell-communication in Pseudomonas aeruginosa. In search of selective PqsD inhibitors, two series of benzamidobenzoic acids - one published as RNAP inhibitors and the other as PqsD inhibitors - were investigated for inhibitory activity toward the respective other enzyme. Additionally, novel derivatives were synthesized and biologically evaluated. By this means, the structural features needed for benzamidobenzoic acids to be potent and, most notably, selective PqsD inhibitors were identified. The most interesting compound of this study was the 3-Cl substituted compound 5 which strongly inhibits PqsD (IC₅₀ 6.2 μM) while exhibiting no inhibition of RNAP.
European Journal of Medicinal Chemistry | 2015
J. Henning Sahner; Martin Empting; Ahmed Kamal; Elisabeth Weidel; Matthias Groh; Carsten Börger; Rolf W. Hartmann
Pseudomonas aeruginosa employs a quorum sensing (QS) communication system that makes use of small diffusible molecules. Among other effects, the QS system coordinates the formation of biofilm which decisively contributes to difficulties in the therapy of Pseudomonas infections. The present work deals with the structure-activity exploration of ureidothiophene-2-carboxylic acids as inhibitors of PqsD, a key enzyme in the biosynthetic pathway of signal molecules in the Pseudomonas QS system. We describe an improvement of the inhibitory activity by successfully combining features from two different PqsD inhibitor classes. Furthermore the functional groups, which are responsible for the inhibitory potency, were identified. Moreover, the inability of the new inhibitors, to prevent signal molecule formation in whole cell assays, is discussed.
RSC Advances | 2014
Walid A. M. Elgaher; Martina Fruth; Matthias Groh; Jörg Haupenthal; Rolf W. Hartmann
The emergence of bacterial resistance requires the development of new antibiotics with an alternative mode of action. Based on class I, developed in our previous study, a new series of RNA polymerase (RNAP) inhibitors targeting the switch region was designed. Feasible synthetic procedures for the aryl-ureido-heterocyclic-carboxylic acids were developed including three regioisomeric thiophene classes (II–IV), as well as three isosteric furan (V, VI) and thiazole (VII) classes. Biological evaluation using a RNAP transcription inhibition assay revealed that class II compounds possess the same activity as the parent class I, whereas classes III, V–VII were active, however with lower potency. Structure–activity relationship (SAR) studies, supported by molecular modeling, elucidated the structural requirements necessary for interaction with the binding site. Beside the RNAP inhibitory effects, the new compounds displayed good antibacterial activities against Gram positive bacteria and the Gram negative E. coli TolC strain. Moreover, they showed no cross resistance with the clinically used RNAP inhibitor rifampicin (Rif) and a lower rate of resistance compared to Rif.
Chemistry: A European Journal | 2013
Weixing Zhu; Matthias Groh; Jörg Haupenthal; Rolf W. Hartmann
Chasing the active impurity: In the validation of a screening hit it was discovered that a polymeric trace impurity was responsible for the biological activity. Such a side product can be formed with similar compounds. During the investigations it was discovered that the negatively charged macromolecule interacts very efficiently with the protein surface of E. coli RNAP via electrostatic interactions.
Organic Letters | 2012
Matthias Groh; Daniel Meidlinger; Gerhard Bringmann; Andreas Speicher
The Heck protocol was applied for the first time to the atroposelective synthesis of macrocyclic natural products. As ring closure to bis(bibenzyls) of the isoplagiochin type leads to a configurationally stable biaryl axis in the molecule, cyclization could be conducted atroposelectively in the presence of a chiral BINAP ligand.
ChemBioChem | 2015
J. Henning Sahner; Hilda Sucipto; Silke C. Wenzel; Matthias Groh; Rolf W. Hartmann; Rolf Müller
Myxopyronin is a natural α‐pyrone antibiotic from the soil bacterium Myxococcus fulvus Mx f50. Myxopyronin inhibits bacterial RNA polymerase (RNAP) by binding to a part of the enzyme not targeted by the clinically used rifamycins. This mode of action makes myxopyronins promising molecules for the development of novel broad‐spectrum antibacterials. We describe the derivatization of myxopyronins by an advanced mutasynthesis approach as a first step towards this goal. Site‐directed mutagenesis of the biosynthetic machinery was used to block myxopyronin biosynthesis at different stages. The resulting mutants were fed with diverse precursors that mimic the biosynthetic intermediates to restore production. Mutasynthon incorporation and production of novel myxopyronin derivatives were analyzed by HPLC‐MS/MS. This work sets the stage for accessing numerous myxopyronin derivatives, thus significantly expanding the chemical space of f α‐pyrone antibiotics.
Antimicrobial Agents and Chemotherapy | 2014
Weixing Zhu; Jörg Haupenthal; Matthias Groh; Michelle Fountain; Rolf W. Hartmann
ABSTRACT CBR703 was reported to inhibit bacterial RNA polymerase (RNAP) and biofilm formation, considering it to be a good candidate for further optimization. While synthesized derivatives of CBR703 did not result in more-active RNAP inhibitors, we observed promising antibacterial activities. These again correlated with a significant cytotoxicity toward mammalian cells. Furthermore, we suspect the promising effects on biofilm formation to be artifacts. Consequently, this class of compounds can be considered unattractive as antibacterial agents.