Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias Gruhn is active.

Publication


Featured researches published by Matthias Gruhn.


The Journal of Neuroscience | 2009

Neural control of unloaded leg posture and of leg swing in stick insect, cockroach, and mouse differs from that in larger animals.

Scott L. Hooper; Christoph Guschlbauer; Marcus Blümel; Philipp Rosenbaum; Matthias Gruhn; Turgay Akay; Ansgar Büschges

Stick insect (Carausius morosus) leg muscles contract and relax slowly. Control of stick insect leg posture and movement could therefore differ from that in animals with faster muscles. Consistent with this possibility, stick insect legs maintained constant posture without leg motor nerve activity when the animals were rotated in air. That unloaded leg posture was an intrinsic property of the legs was confirmed by showing that isolated legs had constant, gravity-independent postures. Muscle ablation experiments, experiments showing that leg muscle passive forces were large compared with gravitational forces, and experiments showing that, at the rest postures, agonist and antagonist muscles generated equal forces indicated that these postures depended in part on leg muscles. Leg muscle recordings showed that stick insect swing motor neurons fired throughout the entirety of swing. To test whether these results were specific to stick insect, we repeated some of these experiments in cockroach (Periplaneta americana) and mouse. Isolated cockroach legs also had gravity-independent rest positions and mouse swing motor neurons also fired throughout the entirety of swing. These data differ from those in human and horse but not cat. These size-dependent variations in whether legs have constant, gravity-independent postures, in whether swing motor neurons fire throughout the entirety of swing, and calculations of how quickly passive muscle force would slow limb movement as limb size varies suggest that these differences may be caused by scaling. Limb size may thus be as great a determinant as phylogenetic position of unloaded limb motor control strategy.


Advances in Insect Physiology | 2007

Mechanosensory Feedback in Walking: From Joint Control to Locomotor Patterns

Ansgar Büschges; Matthias Gruhn

Abstract The generation of a functional motor output for walking is the result of the activity of central pattern generating networks, local feedback from sensory neurons about movements and forces generated in the locomotor organs and through interaction with coordinating signals from neighbouring segments or appendages. This chapter addresses the current knowledge about the role and processing of mechanosensory feedback for walking in insects. Special focus will be given to (i) the mechanosensory signals that are utilized for the generation and control of walking, and the state-dependent modification in their processing, (ii) the organization of neural networks controlling single-leg stepping, (iii) the role of mechanosensory signals in intersegmental coordination and, finally, (iv) modifications in the walking motor output that are associated with changing walking speed and walking direction. We will place the current knowledge and new results into the broader context of motor pattern generation for other locomotor behaviours and in other organisms.


Journal of Neurophysiology | 2010

Activity Patterns and Timing of Muscle Activity in the Forward Walking and Backward Walking Stick Insect Carausius morosus

Philipp Rosenbaum; Anne Wosnitza; Ansgar Büschges; Matthias Gruhn

Understanding how animals control locomotion in different behaviors requires understanding both the kinematics of leg movements and the neural activity underlying these movements. Stick insect leg kinematics differ in forward and backward walking. Describing leg muscle activity in these behaviors is a first step toward understanding the neuronal basis for these differences. We report here the phasing of EMG activities and latencies of first spikes relative to precise electrical measurements of middle leg tarsus touchdown and liftoff of three pairs (protractor/retractor coxae, levator/depressor trochanteris, extensor/flexor tibiae) of stick insect middle leg antagonistic muscles that play central roles in generating leg movements during forward and backward straight walking. Forward walking stance phase muscle (depressor, flexor, and retractor) activities were tightly coupled to touchdown, beginning on average 93 ms prior to and 9 and 35 ms after touchdown, respectively. Forward walking swing phase muscle (levator, extensor, and protractor) activities were less tightly coupled to liftoff, beginning on average 100, 67, and 37 ms before liftoff, respectively. In backward walking the protractor/retractor muscles reversed their phasing compared with forward walking, with the retractor being active during swing and the protractor during stance. Comparison of intact animal and reduced two- and one-middle-leg preparations during forward straight walking showed only small alterations in overall EMG activity but changes in first spike latencies in most muscles. Changing body height, most likely due to changes in leg joint loading, altered the intensity, but not the timing, of depressor muscle activity.


The Journal of Experimental Biology | 2009

Straight walking and turning on a slippery surface.

Matthias Gruhn; Lyuba Zehl; Ansgar Büschges

SUMMARY In stick insects, walking is the result of the co-action of different pattern generators for the single legs and coordinating inter-leg influences. We have used a slippery surface setup to understand the role the local neuronal processing in the thoracic ganglia plays in the ability of the animal to show turning movements. To achieve this, we removed the influence of mechanical coupling through the ground by using the slippery surface and removed sensory input by the successive amputation of neighboring legs. We analyzed the walking pattern of the front, middle and hind legs of tethered animals mounted above the surface and compared the kinematics of the straight walking legs with those of the curve walking inside and outside legs. The walking pattern was monitored both electrically through tarsal contact measurement and optically by using synchronized high-speed video. The vectors of leg movement are presented for the intact and a reduced preparation. Animals showed the ability to walk in a coordinated fashion on the slippery surface. Upon change from straight to curve walking, the stride length for the inside legs shortens and the vector of movement of the inner legs changes to pull the animal into the curve, while the outer legs act to pull and push it into the turn. In the reduced two-leg and in the single-leg preparation the behavior of the legs remained largely unchanged in the behavioral contexts of straight walking or turning with only small changes in the extreme positions. This suggests that the single stepping legs perform given motor programs on the slippery surface in a fashion that is highly independent not only of mechanical coupling between but also of the presence of the other legs.


Journal of Neuroscience Methods | 2006

Tethered stick insect walking: A modified slippery surface setup with optomotor stimulation and electrical monitoring of tarsal contact

Matthias Gruhn; Oliver Hoffmann; Michael Dübbert; Hans Scharstein; Ansgar Büschges

A modified and improved setup based on Epstein and Graham [Epstein S, Graham D. Behaviour and motor output of stick insects walking on a slippery surface. I. Forward walking. J Exp Biol 1983;105: 215-29] to study straight and curve walking in the stick insect was developed and applications for its use are described. The animal is fixed on a balsa stick and walks freely on a slippery surface created with a thin film of a glycerin/water solution on a black, Ni-coated, polished brass plate. The glycerine/water ratio controls the viscosity of the lubricant and thereby the forces necessary to move the legs of the stick insect. A small amount of NaCl is added to ensure electric conductivity. Walking is induced through an optomotor stimulus given by two stripe-projectors producing rotatory and translatory stimuli to influence walking direction. The walking pattern is monitored in two ways: (1) tarsal contact with the slippery surface is measured electrically using a lock-in-amplifier. The tarsal contact signal allows correlation with the activity in different muscles of the stick insect leg recorded with EMG electrodes; (2) leg kinematics in the horizontal plane is monitored using synchronized high speed video. This setup allows us to determine the coupling of activity in different leg muscles to either swing or stance phase during straight and curve walking in the intact animal or the reduced single-leg preparation with a high time resolution.


Journal of Neurophysiology | 2013

A neuromechanical model for the neuronal basis of curve walking in the stick insect.

S. Knops; Tibor Istvan Tóth; Christoph Guschlbauer; Matthias Gruhn; Silvia Daun-Gruhn

The coordination of the movement of single and multiple limbs is essential for the generation of locomotion. Movement about single joints and the resulting stepping patterns are usually generated by the activity of antagonistic muscle pairs. In the stick insect, the three major muscle pairs of a leg are the protractor and retractor coxae, the levator and depressor trochanteris, and the flexor and extensor tibiae. The protractor and retractor move the coxa, and thereby the leg, forward and backward. The levator and depressor move the femur up and down. The flexor flexes, and the extensor extends the tibia about the femur-tibia joint. The underlying neuronal mechanisms for a forward stepping middle leg have been thoroughly investigated in experimental and theoretical studies. However, the details of the neuronal and mechanical mechanisms driving a stepping single leg in situations other than forward walking remain largely unknown. Here, we present a neuromechanical model of the coupled three joint control system of the stick insects middle leg. The model can generate forward, backward, or sideward stepping. Switching between them is achieved by changing only a few central signals controlling the neuromechanical model. In kinematic simulations, we are able to generate curve walking with two different mechanisms. In the first, the inner middle leg is switched from forward to sideward and in the second to backward stepping. Both are observed in the behaving animal, and in the model and animal alike, backward stepping of the inner middle leg produces tighter turns than sideward stepping.


Biological Cybernetics | 2011

Dominance of local sensory signals over inter-segmental effects in a motor system: experiments

Anke Borgmann; Tibor Istvan Tóth; Matthias Gruhn; Silvia Daun-Gruhn; Ansgar Büschges

Legged locomotion requires that information local to one leg, and inter-segmental signals coming from the other legs are processed appropriately to establish a coordinated walking pattern. However, very little is known about the relative importance of local and inter-segmental signals when they converge upon the central pattern generators (CPGs) of different leg joints. We investigated this question on the CPG of the middle leg coxa–trochanter (CTr)-joint of the stick insect which is responsible for lifting and lowering the leg. We used a semi-intact preparation with an intact front leg stepping on a treadmill, and simultaneously stimulated load sensors of the middle leg. We found that middle leg load signals induce bursts in the middle leg depressor motoneurons (MNs). The same local load signals could also elicit rhythmic activity in the CPG of the middle leg CTr-joint when the stimulation of middle leg load sensors coincided with front leg stepping. However, the influence of front leg stepping was generally weak such that front leg stepping alone was only rarely accompanied by switching between middle leg levator and depressor MN activity. We therefore conclude that the impact of the local sensory signals on the levator–depressor motor system is stronger than the inter-segmental influence through front leg stepping.


Journal of Neurophysiology | 2009

Control of Stepping Velocity in the Stick Insect Carausius morosus

Matthias Gruhn; Géraldine von Uckermann; Sandra Westmark; Anne Wosnitza; Ansgar Büschges; Anke Borgmann

We performed electrophysiological and behavioral experiments in single-leg preparations and intact animals of the stick insect Carausius morosus to understand mechanisms underlying the control of walking speed. At the level of the single leg, we found no significant correlation between stepping velocity and spike frequency of motor neurons (MNs) other than the previously shown modification in flexor (stance) MN activity. However, pauses between stance and swing motoneuron activity at the transition from stance to swing phase and stepping velocity are correlated. Pauses become shorter with increasing speed and completely disappear during fast stepping sequences. By means of extra- and intracellular recordings in single-leg stick insect preparations we found no systematic relationship between the velocity of a stepping front leg and the motoneuronal activity in the ipsi- or contralateral mesothoracic protractor and retractor, as well as flexor and extensor MNs. The observations on the lack of coordination of stepping velocity between legs in single-leg preparations were confirmed in behavioral experiments with intact stick insects tethered above a slippery surface, thereby effectively removing mechanical coupling through the ground. In this situation, there were again no systematic correlations between the stepping velocities of different legs, despite the finding that an increase in stepping velocity in a single front leg is correlated with a general increase in nerve activity in all connectives between the subesophageal and all thoracic ganglia. However, when the tethered animal increased walking speed due to a short tactile stimulus, provoking an escape-like response, stepping velocities of ipsilateral legs were found to be correlated for several steps. These results indicate that there is no permanent coordination of stepping velocities between legs, but that such coordination can be activated under certain circumstances.


Journal of Neuroscience Methods | 2002

An implantable electrode design for both chronic in vivo nerve recording and axon stimulation in freely behaving crayfish

Matthias Gruhn; Werner Rathmayer

A chronically implantable electrode design permitting alternate extracellular nerve recording and axon stimulation in freely behaving crayfish was developed. The electrode consists of a double hook made from 20 microm thin platinum wire that can be fitted to various nerve diameters, and is easily implantable. A fast curing, flexible two-component silicone was used for insulation. The double hook was connected to plugs and fixed on the carapace of a crayfish allowing the animals to roam freely. The setup also allows for repeated dis- and re-connection of the crayfish for alternating recording and stimulation. Two channel recordings were used to determine directionality and to discriminate between afferent activity of the two stretch receptor neurons and efferent activity of several motor neurons. In addition, they were also used to determine the conduction velocity of the recorded efferent activity. Stable two-channel recordings could be obtained for up to 5 months and 15 days without apparent effects on the animal. In vivo stimulation could be performed for at least 3 1/2 weeks. The implantable double hook is suitable for widespread use in invertebrate neurobiology.


Journal of Visualized Experiments | 2011

Studying the Neural Basis of Adaptive Locomotor Behavior in Insects

Matthias Gruhn; Philipp Rosenbaum; Hans-Peter Bollhagen; Ansgar Bueschges

Studying the neural basis of walking behavior, one often faces the problem that it is hard to separate the neuronally produced stepping output from those leg movements that result from passive forces and interactions with other legs through the common contact with the substrate. If we want to understand, which part of a given movement is produced by nervous system motor output, kinematic analysis of stepping movements, therefore, needs to be complemented with electrophysiological recordings of motor activity. The recording of neuronal or muscular activity in a behaving animal is often limited by the electrophysiological equipment which can constrain the animal in its ability to move with as many degrees of freedom as possible. This can either be avoided by using implantable electrodes and then having the animal move on a long tether (i.e. Clarac et al., 1987; Duch & Pflüger, 1995; Böhm et al., 1997; Gruhn & Rathmayer, 2002) or by transmitting the data using telemetric devices (Kutsch et al, 1993; Fischer et al., 1996; Tsuchida et al. 2004; Hama et al., 2007; Wang et al., 2008). Both of these elegant methods, which are successfully used in larger arthropods, often prove difficult to apply in smaller walking insects which either easily get entangled in the long tether or are hindered by the weight of the telemetric device and its batteries. In addition, in all these cases, it is still impossible to distinguish between the purely neuronal basis of locomotion and the effects exerted by mechanical coupling between the walking legs through the substrate. One solution for this problem is to conduct the experiments in a tethered animal that is free to walk in place and that is locally suspended, for example over a slippery surface, which effectively removes most ground contact mechanics. This has been used to study escape responses (Camhi and Nolen, 1981; Camhi and Levy, 1988), turning (Tryba and Ritzman, 2000a,b; Gruhn et al., 2009a), backward walking (Graham and Epstein, 1985) or changes in velocity (Gruhn et al., 2009b) and it allows the experimenter easily to combine intra- and extracellular physiology with kinematic analyses (Gruhn et al., 2006). We use a slippery surface setup to investigate the timing of leg muscles in the behaving stick insect with respect to touch-down and lift-off under different behavioral paradigms such as straight forward and curved walking in intact and reduced preparations.

Collaboration


Dive into the Matthias Gruhn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge