Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias J. Gruber is active.

Publication


Featured researches published by Matthias J. Gruber.


Neuron | 2014

Hippocampal Activity Patterns Carry Information about Objects in Temporal Context

Liang Tien Hsieh; Matthias J. Gruber; Lucas J. Jenkins; Charan Ranganath

The hippocampus is critical for human episodic memory, but its role remains controversial. One fundamental question concerns whether the hippocampus represents specific objects or assigns context-dependent representations to objects. Here, we used multivoxel pattern similarity analysis of fMRI data during retrieval of learned object sequences to systematically investigate hippocampal coding of object and temporal context information. Hippocampal activity patterns carried information about the temporal positions of objects in learned sequences, but not about objects or temporal positions in random sequences. Hippocampal activity patterns differentiated between overlapping object sequences and between temporally adjacent objects that belonged to distinct sequence contexts. Parahippocampal and perirhinal cortex showed different pattern information profiles consistent with coding of temporal position and object information, respectively. These findings are consistent with models proposing that the hippocampus represents objects within specific temporal contexts, a capability that might explain its critical role in episodic memory.


Neuron | 2014

States of Curiosity Modulate Hippocampus-Dependent Learning via the Dopaminergic Circuit

Matthias J. Gruber; Bernard D. Gelman; Charan Ranganath

People find it easier to learn about topics that interest them, but little is known about the mechanisms by which intrinsic motivational states affect learning. We used functional magnetic resonance imaging to investigate how curiosity (intrinsic motivation to learn) influences memory. In both immediate and one-day-delayed memory tests, participants showed improved memory for information that they were curious about and for incidental material learned during states of high curiosity. Functional magnetic resonance imaging results revealed that activity in the midbrain and the nucleus accumbens was enhanced during states of high curiosity. Importantly, individual variability in curiosity-driven memory benefits for incidental material was supported by anticipatory activity in the midbrain and hippocampus and by functional connectivity between these regions. These findings suggest a link between the mechanisms supporting extrinsic reward motivation and intrinsic curiosity and highlight the importance of stimulating curiosity to create more effective learning experiences.


The Journal of Neuroscience | 2010

Voluntary Control over Prestimulus Activity Related to Encoding

Matthias J. Gruber; Leun J. Otten

A new development in our understanding of human long-term memory is that effective memory formation relies on neural activity just before an event. It is unknown whether such prestimulus activity is under voluntary control or a reflection of random fluctuations over time. In the present study, we addressed two issues: (1) whether prestimulus activity is influenced by an individuals motivation to encode, and (2) at what point in time encoding-related activity emerges. Electrical brain activity was recorded while healthy male and female adults memorized series of words. Each word was preceded by a cue, which indicated the monetary reward that would be received if the following word was later remembered. Memory was tested after a short delay with a five-way recognition task to separate different sources of recognition. Electrical activity elicited by the reward cue predicted later memory of a word. Crucially, however, this was only observed when the incentive to memorize a word was high. Encoding-related activity preceded high-reward words that were later recollected. This activity started shortly after cue onset and persisted until word onset. Prestimulus activity thus not only signals cue-related processing but also an ensuing preparatory state. In contrast, reward-related activity was limited to the time period immediately after the reward cue. These findings indicate that engaging neural activity that benefits the encoding of an upcoming event is under voluntary control, reflecting a strategic preparatory state in anticipation of processing an event.


Neuron | 2016

Post-learning Hippocampal Dynamics Promote Preferential Retention of Rewarding Events

Matthias J. Gruber; Maureen Ritchey; Shao Fang Wang; Manoj K. Doss; Charan Ranganath

Reward motivation is known to modulate memory encoding, and this effect depends on interactions between the substantia nigra/ventral tegmental area complex (SN/VTA) and the hippocampus. It is unknown, however, whether these interactions influence offline neural activity in the human brain that is thought to promote memory consolidation. Here we used fMRI to test the effect of reward motivation on post-learning neural dynamics and subsequent memory for objects that were learned in high- and low-reward motivation contexts. We found that post-learning increases in resting-state functional connectivity between the SN/VTA and hippocampus predicted preferential retention of objects that were learned in high-reward contexts. In addition, multivariate pattern classification revealed that hippocampal representations of high-reward contexts were preferentially reactivated during post-learning rest, and the number of hippocampal reactivations was predictive of preferential retention of items learned in high-reward contexts. These findings indicate that reward motivation alters offline post-learning dynamics between the SN/VTA and hippocampus, providing novel evidence for a potential mechanism by which reward could influence memory consolidation.


NeuroImage | 2013

Expected reward modulates encoding-related theta activity before an event

Matthias J. Gruber; Andrew J. Watrous; Arne D. Ekstrom; Charan Ranganath; Leun J. Otten

Oscillatory brain activity in the theta frequency range (4–8 Hz) before the onset of an event has been shown to affect the likelihood of successfully encoding the event into memory. Recent work has also indicated that frontal theta activity might be modulated by reward, but it is not clear how reward expectancy, anticipatory theta activity, and memory formation might be related. Here, we used scalp electroencephalography (EEG) to assess the relationship between these factors. EEG was recorded from healthy adults while they memorized a series of words. Each word was preceded by a cue that indicated whether a high or low monetary reward would be earned if the word was successfully remembered in a later recognition test. Frontal theta power between the presentation of the reward cue and the onset of a word was predictive of later memory for the word, but only in the high reward condition. No theta differences were observed before word onset following low reward cues. The magnitude of prestimulus encoding-related theta activity in the high reward condition was correlated with the number of high reward words that were later confidently recognized. These findings provide strong evidence for a link between reward expectancy, theta activity, and memory encoding. Theta activity before event onset seems to be especially important for the encoding of motivationally significant stimuli. One possibility is that dopaminergic activity during reward anticipation mediates frontal theta activity related to memory.


bioRxiv | 2017

Theta Phase Synchronization Between The Human Hippocampus And The Prefrontal Cortex Supports Learning Of Unexpected Information

Matthias J. Gruber; Liang-Tien Hsieh; Bernhard P. Staresina; Christian E. Elger; Juergen Fell; Nikolai Axmacher; Charan Ranganath

Events that violate predictions are thought to not only modulate activity within the hippocampus and prefrontal cortex, but also to enhance communication between the two regions. Several studies in rodents have shown that synchronized theta oscillations facilitate communication between the prefrontal cortex and hippocampus during salient events, but it remains unclear whether similar oscillatory mechanisms support interactions between the two regions in humans. Here, we had the rare opportunity to conduct simultaneous electrophysiological recordings from the human hippocampus and prefrontal cortex from two patients undergoing presurgical evaluation for pharmaco-resistant epilepsy. Recordings were conducted during a task that involved encoding of contextually expected and unexpected visual stimuli. Across both patients, hippocampal-prefrontal theta phase synchronization was significantly higher during encoding of unexpected study items, compared to contextually expected study items. In contrast, we did not find increased theta synchronization between the prefrontal cortex and rhinal cortex. Our findings are consistent with the idea that theta oscillations orchestrate communication between the hippocampus and prefrontal cortex during the processing of contextually salient information.


Experimental Aging Research | 2018

Learning facts during aging: the benefits of curiosity

Giulia Galli; Miroslav Sirota; Matthias J. Gruber; Bianca Elena Ivanof; Janani Ganesh; Maurizio Materassi; Alistair Thorpe; Vanessa M. Loaiza; Marinella Cappelletti; Fergus I. M. Craik

ABSTRACT Background/study context: Recent studies have shown that young adults better remember factual information they are curious about. It is not entirely clear, however, whether this effect is retained during aging. Here, the authors investigated curiosity-driven memory benefits in young and elderly individuals. Methods: In two experiments, young (age range 18–26) and older (age range 65–89) adults read trivia questions and rated their curiosity to find out the answer. They also attended to task-irrelevant faces presented between the trivia question and the answer. The authors then administered a surprise memory test to assess recall accuracy for trivia answers and recognition memory performance for the incidentally learned faces. Results: In both young and elderly adults, recall performance was higher for answers to questions that elicited high levels of curiosity. In Experiment 1, the authors also found that faces presented in temporal proximity to curiosity-eliciting trivia questions were better recognized, indicating that the beneficial effects of curiosity extended to the encoding of task-irrelevant material. Conclusions: These findings show that elderly individuals benefit from the memory-enhancing effects of curiosity. This may lead to the implementation of learning strategies that target and stimulate curiosity in aging.


Journal of Cognitive Neuroscience | 2018

Alpha oscillations during incidental encoding predict subsequent memory for new "foil" information

David A Vogelsang; Matthias J. Gruber; Zara M. Bergström; Charan Ranganath; Jonathan Sam Simons

People can employ adaptive strategies to increase the likelihood that previously encoded information will be successfully retrieved. One such strategy is to constrain retrieval toward relevant information by reimplementing the neurocognitive processes that were engaged during encoding. Using EEG, we examined the temporal dynamics with which constraining retrieval toward semantic versus nonsemantic information affects the processing of new “foil” information encountered during a memory test. Time–frequency analysis of EEG data acquired during an initial study phase revealed that semantic compared with nonsemantic processing was associated with alpha decreases in a left frontal electrode cluster from around 600 msec after stimulus onset. Successful encoding of semantic versus nonsemantic foils during a subsequent memory test was related to decreases in alpha oscillatory activity in the same left frontal electrode cluster, which emerged relatively late in the trial at around 1000–1600 msec after stimulus onset. Across participants, left frontal alpha power elicited by semantic processing during the study phase correlated significantly with left frontal alpha power associated with semantic foil encoding during the memory test. Furthermore, larger left frontal alpha power decreases elicited by semantic foil encoding during the memory test predicted better subsequent semantic foil recognition in an additional surprise foil memory test, although this effect did not reach significance. These findings indicate that constraining retrieval toward semantic information involves reimplementing semantic encoding operations that are mediated by alpha oscillations and that such reimplementation occurs at a late stage of memory retrieval, perhaps reflecting additional monitoring processes.


Journal of Cognitive Neuroscience | 2018

Theta Phase Synchronization between the Human Hippocampus and Prefrontal Cortex Increases during Encoding of Unexpected Information: A Case Study

Matthias J. Gruber; Liang-Tien Hsieh; Bernhard P. Staresina; Christian E. Elger; Juergen Fell; Nikolai Axmacher; Charan Ranganath

Events that violate predictions are thought to not only modulate activity within the hippocampus and PFC but also enhance communication between the two regions. Scalp and intracranial EEG studies have shown that oscillations in the theta frequency band are enhanced during processing of contextually unexpected information. Some theories suggest that the hippocampus and PFC interact during processing of unexpected events, and it is possible that theta oscillations may mediate these interactions. Here, we had the rare opportunity to conduct simultaneous electrophysiological recordings from the human hippocampus and PFC from two patients undergoing presurgical evaluation for pharmacoresistant epilepsy. Recordings were conducted during a task that involved encoding of contextually expected and unexpected visual stimuli. Across both patients, hippocampal–prefrontal theta phase synchronization was significantly higher during encoding of contextually unexpected study items, relative to contextually expected study items. Furthermore, the hippocampal–prefrontal theta phase synchronization was larger for contextually unexpected items that were later remembered compared with later forgotten items. Moreover, we did not find increased theta synchronization between the PFC and rhinal cortex, suggesting that the observed effects were specific to prefrontal–hippocampal interactions. Our findings are consistent with the idea that theta oscillations orchestrate communication between the hippocampus and PFC in support of enhanced encoding of contextually deviant information.


Cognitive Neuroscience | 2018

Curiosity-driven memory enhancement persists over time but does not benefit from post-learning sleep

Christopher J. Stare; Matthias J. Gruber; Lynn Nadel; Charan Ranganath; Rebecca L. Gómez

ABSTRACT Sleep-dependent memory processing is dependent on several factors at learning, including emotion, encoding strength, and knowledge of future relevance. Recent work documents the role of curiosity on learning, showing that memory associated with high-curiosity encoding states is retained better and that this effect may be driven by activity within the dopaminergic circuit. Here, we examined whether this curiosity effect was enhanced by or dependent on sleep-related consolidation. Participants learned the answers to trivia questions that they had previously rated on a curiosity scale, and they were shown faces between each question and answer presentation. Memory for these answers and faces was tested either immediately or after a 12-hour delay containing sleep or wakefulness, and polysomnography data was collected for a subset of the sleep participants. Although the curiosity effect for both the answers and incidentally-learned faces was replicated in immediate tests and after the 12-hour delay, the effect was not impacted by the presence of sleep in either case, nor did the effect show a relationship with total sleep time or time in slow-wave sleep. This study suggests that curiosity may be a learning factor that is not subsequently affected by sleep-dependent memory consolidation, but more work ought to examine the role of sleep on curiosity-driven memory in other contexts.

Collaboration


Dive into the Matthias J. Gruber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leun J. Otten

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giulia Galli

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge