Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias John is active.

Publication


Featured researches published by Matthias John.


Nature | 2004

Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs

Jürgen Soutschek; Akin Akinc; Birgit Bramlage; Klaus Charisse; Rainer Constien; Mary Donoghue; Sayda M. Elbashir; Anke Geick; Philipp Hadwiger; Jens Harborth; Matthias John; Venkitasamy Kesavan; Gary Lavine; Rajendra K. Pandey; Timothy Racie; Kallanthottathil G. Rajeev; Ingo Röhl; Ivanka Toudjarska; Gang Wang; Silvio Wuschko; David Bumcrot; Victor Koteliansky; Stefan Limmer; Muthiah Manoharan; Hans-Peter Vornlocher

RNA interference (RNAi) holds considerable promise as a therapeutic approach to silence disease-causing genes, particularly those that encode so-called ‘non-druggable’ targets that are not amenable to conventional therapeutics such as small molecules, proteins, or monoclonal antibodies. The main obstacle to achieving in vivo gene silencing by RNAi technologies is delivery. Here we show that chemically modified short interfering RNAs (siRNAs) can silence an endogenous gene encoding apolipoprotein B (apoB) after intravenous injection in mice. Administration of chemically modified siRNAs resulted in silencing of the apoB messenger RNA in liver and jejunum, decreased plasma levels of apoB protein, and reduced total cholesterol. We also show that these siRNAs can silence human apoB in a transgenic mouse model. In our in vivo study, the mechanism of action for the siRNAs was proven to occur through RNAi-mediated mRNA degradation, and we determined that cleavage of the apoB mRNA occurred specifically at the predicted site. These findings demonstrate the therapeutic potential of siRNAs for the treatment of disease.


Nature | 2006

RNAi-mediated gene silencing in non-human primates.

Tracy Zimmermann; Amy C. H. Lee; Akin Akinc; Birgit Bramlage; David Bumcrot; Matthew N. Fedoruk; Jens Harborth; James Heyes; Lloyd Jeffs; Matthias John; Adam Judge; Kieu Lam; Kevin McClintock; Lubomir Nechev; Lorne R. Palmer; Timothy Racie; Ingo Röhl; Stephan Seiffert; Sumi Shanmugam; Vandana Sood; Jürgen Soutschek; Ivanka Toudjarska; Amanda J. Wheat; Ed Yaworski; William Zedalis; Victor Koteliansky; Muthiah Manoharan; Hans-Peter Vornlocher; Ian Maclachlan

The opportunity to harness the RNA interference (RNAi) pathway to silence disease-causing genes holds great promise for the development of therapeutics directed against targets that are otherwise not addressable with current medicines. Although there are numerous examples of in vivo silencing of target genes after local delivery of small interfering RNAs (siRNAs), there remain only a few reports of RNAi-mediated silencing in response to systemic delivery of siRNA, and there are no reports of systemic efficacy in non-rodent species. Here we show that siRNAs, when delivered systemically in a liposomal formulation, can silence the disease target apolipoprotein B (ApoB) in non-human primates. APOB-specific siRNAs were encapsulated in stable nucleic acid lipid particles (SNALP) and administered by intravenous injection to cynomolgus monkeys at doses of 1 or 2.5 mg kg-1. A single siRNA injection resulted in dose-dependent silencing of APOB messenger RNA expression in the liver 48 h after administration, with maximal silencing of >90%. This silencing effect occurred as a result of APOB mRNA cleavage at precisely the site predicted for the RNAi mechanism. Significant reductions in ApoB protein, serum cholesterol and low-density lipoprotein levels were observed as early as 24 h after treatment and lasted for 11 days at the highest siRNA dose, thus demonstrating an immediate, potent and lasting biological effect of siRNA treatment. Our findings show clinically relevant RNAi-mediated gene silencing in non-human primates, supporting RNAi therapeutics as a potential new class of drugs.


Nature Biotechnology | 2008

A combinatorial library of lipid-like materials for delivery of RNAi therapeutics

Akin Akinc; Andreas Zumbuehl; Michael Goldberg; Elizaveta S. Leshchiner; Valentina Busini; Naushad Hossain; Sergio Bacallado; David N. Nguyen; Jason Fuller; Rene Alvarez; Anna Borodovsky; Todd Borland; Rainer Constien; Antonin de Fougerolles; J. Robert Dorkin; K. Narayanannair Jayaprakash; Muthusamy Jayaraman; Matthias John; Victor Koteliansky; Muthiah Manoharan; Lubomir Nechev; June Qin; Timothy Racie; Denitza Raitcheva; Kallanthottathil G. Rajeev; Dinah Sah; Jürgen Soutschek; Ivanka Toudjarska; Hans-Peter Vornlocher; Tracy Zimmermann

The safe and effective delivery of RNA interference (RNAi) therapeutics remains an important challenge for clinical development. The diversity of current delivery materials remains limited, in part because of their slow, multi-step syntheses. Here we describe a new class of lipid-like delivery molecules, termed lipidoids, as delivery agents for RNAi therapeutics. Chemical methods were developed to allow the rapid synthesis of a large library of over 1,200 structurally diverse lipidoids. From this library, we identified lipidoids that facilitate high levels of specific silencing of endogenous gene transcripts when formulated with either double-stranded small interfering RNA (siRNA) or single-stranded antisense 2′-O-methyl (2′-OMe) oligoribonucleotides targeting microRNA (miRNA). The safety and efficacy of lipidoids were evaluated in three animal models: mice, rats and nonhuman primates. The studies reported here suggest that these materials may have broad utility for both local and systemic delivery of RNA therapeutics.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates.

Maria Frank-Kamenetsky; Aldo Grefhorst; Norma N. Anderson; Timothy Racie; Birgit Bramlage; Akin Akinc; David Butler; Klaus Charisse; Robert Dorkin; Yupeng Fan; Christina Gamba-Vitalo; Philipp Hadwiger; Muthusamy Jayaraman; Matthias John; K. Narayanannair Jayaprakash; Martin Maier; Lubomir Nechev; Kallanthottathil G. Rajeev; Timothy Read; Ingo Röhl; Jürgen Soutschek; Pamela Tan; Jamie Wong; Gang Wang; Tracy Zimmermann; Antonin de Fougerolles; Hans Peter Vornlocher; Robert Langer; Daniel G. Anderson; Muthiah Manoharan

Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates low density lipoprotein receptor (LDLR) protein levels and function. Loss of PCSK9 increases LDLR levels in liver and reduces plasma LDL cholesterol (LDLc), whereas excess PCSK9 activity decreases liver LDLR levels and increases plasma LDLc. Here, we have developed active, cross-species, small interfering RNAs (siRNAs) capable of targeting murine, rat, nonhuman primate (NHP), and human PCSK9. For in vivo studies, PCSK9 and control siRNAs were formulated in a lipidoid nanoparticle (LNP). Liver-specific siRNA silencing of PCSK9 in mice and rats reduced PCSK9 mRNA levels by 50–70%. The reduction in PCSK9 transcript was associated with up to a 60% reduction in plasma cholesterol concentrations. These effects were shown to be mediated by an RNAi mechanism, using 5′-RACE. In transgenic mice expressing human PCSK9, siRNAs silenced the human PCSK9 transcript by >70% and significantly reduced PCSK9 plasma protein levels. In NHP, a single dose of siRNA targeting PCSK9 resulted in a rapid, durable, and reversible lowering of plasma PCSK9, apolipoprotein B, and LDLc, without measurable effects on either HDL cholesterol (HDLc) or triglycerides (TGs). The effects of PCSK9 silencing lasted for 3 weeks after a single bolus i.v. administration. These results validate PCSK9 targeting with RNAi therapeutics as an approach to specifically lower LDLc, paving the way for the development of PCSK9-lowering agents as a future strategy for treatment of hypercholesterolemia.


Molecular Therapy | 2013

Hepatocyte-targeted RNAi Therapeutics for the Treatment of Chronic Hepatitis B Virus Infection

Christine I. Wooddell; David B. Rozema; Markus Hossbach; Matthias John; Holly Hamilton; Qili Chu; Julia Hegge; Jason Klein; Darren H. Wakefield; Claudia E. Oropeza; Jochen Deckert; Ingo Roehl; Kerstin Jahn-Hofmann; Philipp Hadwiger; Hans Peter Vornlocher; Alan McLachlan; David L. Lewis

RNA interference (RNAi)-based therapeutics have the potential to treat chronic hepatitis B virus (HBV) infection in a fundamentally different manner than current therapies. Using RNAi, it is possible to knock down expression of viral RNAs including the pregenomic RNA from which the replicative intermediates are derived, thus reducing viral load, and the viral proteins that result in disease and impact the immune systems ability to eliminate the virus. We previously described the use of polymer-based Dynamic PolyConjugate (DPC) for the targeted delivery of siRNAs to hepatocytes. Here, we first show in proof-of-concept studies that simple coinjection of a hepatocyte-targeted, N-acetylgalactosamine-conjugated melittin-like peptide (NAG-MLP) with a liver-tropic cholesterol-conjugated siRNA (chol-siRNA) targeting coagulation factor VII (F7) results in efficient F7 knockdown in mice and nonhuman primates without changes in clinical chemistry or induction of cytokines. Using transient and transgenic mouse models of HBV infection, we show that a single coinjection of NAG-MLP with potent chol-siRNAs targeting conserved HBV sequences resulted in multilog repression of viral RNA, proteins, and viral DNA with long duration of effect. These results suggest that coinjection of NAG-MLP and chol-siHBVs holds great promise as a new therapeutic for patients chronically infected with HBV.


Nature | 2007

Effective RNAi-mediated gene silencing without interruption of the endogenous microRNA pathway

Matthias John; Rainer Constien; Akin Akinc; Michael Goldberg; Young Ah Moon; Martina Spranger; Philipp Hadwiger; Jürgen Soutschek; Hans Peter Vornlocher; Muthiah Manoharan; Markus Stoffel; Robert Langer; Daniel G. Anderson; Jay D. Horton; Victor Koteliansky; David Bumcrot

Systemic administration of synthetic small interfering RNAs (siRNAs) effectively silences hepatocyte gene expression in rodents and primates. Whether or not in vivo gene silencing by synthetic siRNA can disrupt the endogenous microRNA (miRNA) pathway remains to be addressed. Here we show that effective target-gene silencing in the mouse and hamster liver can be achieved by systemic administration of synthetic siRNA without any demonstrable effect on miRNA levels or activity. Indeed, siRNA targeting two hepatocyte-specific genes (apolipoprotein B and factor VII) that achieved efficient (∼80%) silencing of messenger RNA transcripts and a third irrelevant siRNA control were administered to mice without significant changes in the levels of three hepatocyte-expressed miRNAs (miR-122, miR-16 and let-7a) or an effect on miRNA activity. Moreover, multiple administrations of an siRNA targeting the hepatocyte-expressed gene Scap in hamsters achieved long-term mRNA silencing without significant changes in miR-122 levels. This study advances the use of siRNAs as safe and effective tools to silence gene transcripts in animal studies, and supports the continued advancement of RNA interference therapeutics using synthetic siRNA.


Journal of Gene Medicine | 2010

Polyethylenimine/small interfering RNA-mediated knockdown of vascular endothelial growth factor in vivo exerts anti-tumor effects synergistically with Bevacizumab

Sabrina Höbel; Ivette Koburger; Matthias John; Frank Czubayko; Philipp Hadwiger; Hans-Peter Vornlocher; Achim Aigner

RNA interference is a powerful method for the knockdown of pathologically relevant genes. The in vivo delivery of siRNAs, preferably through systemic, nonviral administration, poses the major challenge in the therapeutic application of RNAi. Small interfering RNA (siRNA) complexation with polyethylenimines (PEI) may represent a promising strategy for siRNA‐based therapies and, recently, the novel branched PEI F25‐LMW has been introduced in vitro. Vascular endothelial growth factor (VEGF) is frequently overexpressed in tumors and promotes tumor growth, angiogenesis and metastasis and thus represents an attractive target gene in tumor therapy.


Journal of Virology | 2007

Mouse Cytomegalovirus MicroRNAs Dominate the Cellular Small RNA Profile during Lytic Infection and Show Features of Posttranscriptional Regulation

Lars Dölken; Jonathan Perot; Valérie Cognat; Abdelmalek Alioua; Matthias John; Jürgen Soutschek; Zsolt Ruzsics; Ulrich H. Koszinowski; Olivier Voinnet; Sébastien Pfeffer

ABSTRACT MicroRNAs (miRNAs) are small, noncoding RNA molecules that regulate gene expression at the posttranscriptional level. Originally identified in a variety of organisms ranging from plants to mammals, miRNAs have recently been identified in several viruses. Viral miRNAs may play a role in modulating both viral and host gene expression. Here, we report on the identification and characterization of 18 viral miRNAs from mouse fibroblasts lytically infected with the murine cytomegalovirus (MCMV). The MCMV miRNAs are expressed at early times of infection and are scattered in small clusters throughout the genome with up to four distinct miRNAs processed from a single transcript. No significant homologies to human CMV-encoded miRNAs were found. Remarkably, as soon as 24 h after infection, MCMV miRNAs constituted about 35% of the total miRNA pool, and at 72 h postinfection, this proportion was increased to more than 60%. However, despite the abundance of viral miRNAs during the early phase of infection, the expression of some MCMV miRNAs appeared to be regulated. Hence, for three miRNAs we observed polyuridylation of their 3′ end, coupled to subsequent degradation. Individual knockout mutants of two of the most abundant MCMV miRNAs, miR-m01-4 and miR-M44-1, or a double knockout mutant of miR-m21-1 and miR-M23-2, incurred no or only a very mild growth deficit in murine embryonic fibroblasts in vitro.


Human Mutation | 2010

Genetic modulation of TLR8 response following bacterial phagocytosis

Michael P. Gantier; Aaron T. Irving; Maria Kaparakis-Liaskos; Dakang Xu; Vanessa A. Evans; Paul U. Cameron; James A. Bourne; Richard L. Ferrero; Matthias John; Mark A. Behlke; Bryan R. G. Williams

Human Toll‐like receptors (TLRs) TLR7, TLR8, and TLR9 are important immune sensors of foreign nucleic acids encountered by phagocytes. Although there is growing evidence implicating TLR7 and TLR9 in the detection of intracellular pathogenic bacteria, characterization of such a role for TLR8 is currently lacking. A recent genetic study has correlated the presence of a TLR8 single nucleotide polymorphism (SNP) (rs3764880:A>G; p.Met1Val) with the development of active tuberculosis, suggesting a role for TLR8 in the detection of phagosomal bacteria. Here we provide the first direct evidence that TLR8 sensing is activated in human monocytic cells following Helicobacter pylori phagocytosis. In addition, we show that rs3764880 fine tunes translation of the two TLR8 main isoforms, without affecting protein function. Although we show that TLR8 variant 2 (TLR8v2) is the prevalent form of TLR8 contributing to TLR8 function, we also uncover a role for the TLR8 long isoform (TLR8v1) in the positive regulation of TLR8 function in CD16+CD14+ differentiated monocytes. Thus, TLR8 sensing can be activated following bacterial phagocytosis, and rs3764880 may play a role in the modulation of TLR8‐dependent microbicidal response of infected macrophages. Hum Mutat 31:1069–1079, 2010.


Nucleic Acids Research | 2013

Conformational rearrangements of RIG-I receptor on formation of a multiprotein:dsRNA assembly

Simone A. Beckham; Jason M Brouwer; Anna Roth; Die Wang; Anthony J. Sadler; Matthias John; Kerstin Jahn-Hofmann; Bryan R. G. Williams; Jacqueline A. Wilce; Matthew C. J. Wilce

The retinoic acid inducible gene-I (RIG-I)-like family of receptors is positioned at the front line of our innate cellular defence system. RIG-I detects and binds to foreign duplex RNA in the cytoplasm of both immune and non-immune cells, and initiates the induction of type I interferons and pro-inflammatory cytokines. The mechanism of RIG-I activation by double-stranded RNA (dsRNA) involves a molecular rearrangement proposed to expose the N-terminal pair of caspase activation recruitment domains, enabling an interaction with interferon-beta promoter stimulator 1 (IPS-1) and thereby initiating downstream signalling. dsRNA is particularly stimulatory when longer than 20 bp, potentially through allowing binding of more than one RIG-I molecule. Here, we characterize full-length RIG-I and RIG-I subdomains combined with a stimulatory 29mer dsRNA using multi-angle light scattering and size-exclusion chromatography–coupled small-angle X-ray scattering, to build up a molecular model of RIG-I before and after the formation of a 2:1 protein:dsRNA assembly. We report the small-angle X-ray scattering–derived solution structure of the human apo-RIG-I and observe that on binding of RIG-I to dsRNA in a 2:1 ratio, the complex becomes highly extended and flexible. Hence, here we present the first model of the fully activated oligomeric RIG-I.

Collaboration


Dive into the Matthias John's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guido Gerken

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ci Real

University of Duisburg-Essen

View shared research outputs
Researchain Logo
Decentralizing Knowledge