Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias Mörgelin is active.

Publication


Featured researches published by Matthias Mörgelin.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development

Paulina Kucharzewska; Helena C. Christianson; Johanna E. Welch; Katrin J. Svensson; Erik Fredlund; Markus Ringnér; Matthias Mörgelin; Erika Bourseau-Guilmain; Johan Bengzon; Mattias Belting

Hypoxia, or low oxygen tension, is a major regulator of tumor development and aggressiveness. However, how cancer cells adapt to hypoxia and communicate with their surrounding microenvironment during tumor development remain important questions. Here, we show that secreted vesicles with exosome characteristics mediate hypoxia-dependent intercellular signaling of the highly malignant brain tumor glioblastoma multiforme (GBM). In vitro hypoxia experiments with glioma cells and studies with patient materials reveal the enrichment in exosomes of hypoxia-regulated mRNAs and proteins (e.g., matrix metalloproteinases, IL-8, PDGFs, caveolin 1, and lysyl oxidase), several of which were associated with poor glioma patient prognosis. We show that exosomes derived from GBM cells grown at hypoxic compared with normoxic conditions are potent inducers of angiogenesis ex vivo and in vitro through phenotypic modulation of endothelial cells. Interestingly, endothelial cells were programmed by GBM cell-derived hypoxic exosomes to secrete several potent growth factors and cytokines and to stimulate pericyte PI3K/AKT signaling activation and migration. Moreover, exosomes derived from hypoxic compared with normoxic conditions showed increased autocrine, promigratory activation of GBM cells. These findings were correlated with significantly enhanced induction by hypoxic compared with normoxic exosomes of tumor vascularization, pericyte vessel coverage, GBM cell proliferation, as well as decreased tumor hypoxia in a mouse xenograft model. We conclude that the proteome and mRNA profiles of exosome vesicles closely reflect the oxygenation status of donor glioma cells and patient tumors, and that the exosomal pathway constitutes a potentially targetable driver of hypoxia-dependent intercellular signaling during tumor development.


Journal of Biological Chemistry | 1998

Cartilage Oligomeric Matrix Protein Shows High Affinity Zinc-dependent Interaction with Triple Helical Collagen

Krisztina Rosenberg; Henric Olsson; Matthias Mörgelin; Dick Heinegård

Cartilage and tendon extracellular matrices are composed of collagens, proteoglycans, and a number of noncollagenous proteins. Cartilage oligomeric matrix protein (COMP) is a prominent such protein, structurally related to the thrombospondins. We found that native COMP binds to collagen I/II and procollagen I/II and that the interaction is dependent on the divalent cations Zn2+ or Ni2+, whereas Ca2+, Mg2+, and Mn2+ did not promote binding. Using a solid phase assay, Scatchard analysis identified one class of binding site with a dissociation constant (K d ) close to 1.5 nm in the presence of Zn2+. The results were confirmed by studies using surface plasmon resonance. Furthermore, metal chelate chromatography demonstrated that COMP bound Zn2+ and Ni2+. Electron microscopy showed that the interaction occurred at four defined sites on the 300-nm collagen and procollagen molecules. Two were located close to each end, and two at 126 and 206 nm, respectively, from the C-terminal. COMP interacted via its C-terminal globular domain and significantly only in the presence of Zn2+.


Cell | 2004

M PROTEIN, A CLASSICAL BACTERIAL VIRULENCE DETERMINANT, FORMS COMPLEXES WITH FIBRINOGEN THAT INDUCE VASCULAR LEAKAGE

Heiko Herwald; Henning Cramer; Matthias Mörgelin; Wayne Russell; Ulla Sollenberg; Anna Norrby-Teglund; Hans Flodgaard; Lennart Lindbom; Lars Björck

Increased vascular permeability is a key feature of inflammatory conditions. In severe infections, leakage of plasma from the vasculature induces a life-threatening hypotension. Streptococcus pyogenes, a major human bacterial pathogen, causes a toxic shock syndrome (STSS) characterized by excessive plasma leakage and multi-organ failure. Here we find that M protein, released from the streptococcal surface, forms complexes with fibrinogen, which by binding to beta2 integrins of neutrophils, activate these cells. As a result, neutrophils release heparin binding protein, an inflammatory mediator inducing vascular leakage. In mice, injection of M protein or subcutaneous infection with S. pyogenes causes severe pulmonary damage characterized by leakage of plasma and blood cells. These lesions were prevented by treatment with a beta2 integrin antagonist. In addition, M protein/fibrinogen complexes were identified in tissue biopsies from a patient with necrotizing fasciitis and STSS, further underlining the pathogenic significance of such complexes in severe streptococcal infections.


Journal of Biological Chemistry | 2007

COMP acts as a catalyst in collagen fibrillogenesis

Krisztina Halász; Anja Kassner; Matthias Mörgelin; Dick Heinegård

We have previously reported that COMP (cartilage oligomeric matrix protein) is prominent in cartilage but is also present in tendon and binds to collagens I and II with high affinity. Here we show that COMP influences the fibril formation of these collagens. Fibril formation in the presence of pentameric COMP was much faster, and the amount of collagen in fibrillar form was markedly increased. Monomeric COMP, lacking the N-terminal coiled-coil linker domain, decelerated fibrillogenesis. The data show that stimulation of collagen fibrillogenesis depends on the pentameric nature of COMP and not only on collagen binding. COMP interacts primarily with free collagen I and II molecules, bringing several molecules to close proximity, apparently promoting further assembly. These assemblies further join in discrete steps to a narrow distribution of completed fibril diameters of 149 ± 16 nm with a banding pattern of 67 nm. COMP is not found associated with the mature fibril and dissociates from the collagen molecules or their early assemblies. However, a few COMP molecules are found bound to more loosely associated molecules at the tip/end of the growing fibril. Thus, COMP appears to catalyze the fibril formation by promoting early association of collagen molecules leading to increased rate of fibrillogenesis and more distinct organization of the fibrils.


Journal of Biological Chemistry | 2013

Exosome uptake depends on ERK1/2-heat shock protein 27 signalling and lipid raft-mediated endocytosis negatively regulated by caveolin-1

Katrin J. Svensson; Helena C. Christianson; Anders Wittrup; Erika Bourseau-Guilmain; Eva Lindqvist; Lena Svensson; Matthias Mörgelin; Mattias Belting

Background: Exosome vesicles can transfer molecular information previously shown to stimulate tumor development; however, the mechanism of exosome uptake is unknown. Results: Mammalian cells internalize exosomes through lipid raft-mediated endocytosis negatively regulated by caveolin-1. Conclusion: Our findings provide novel insights into cellular uptake of exosomes. Significance: Our data provide potential strategies for how the exosome uptake pathway may be targeted. The role of exosomes in cancer can be inferred from the observation that they transfer tumor cell derived genetic material and signaling proteins, resulting in e.g. increased tumor angiogenesis and metastasis. However, the membrane transport mechanisms and the signaling events involved in the uptake of these virus-like particles remain ill-defined. We now report that internalization of exosomes derived from glioblastoma (GBM) cells involves nonclassical, lipid raft-dependent endocytosis. Importantly, we show that the lipid raft-associated protein caveolin-1 (CAV1), in analogy with its previously described role in virus uptake, negatively regulates the uptake of exosomes. We find that exosomes induce the phosphorylation of several downstream targets known to associate with lipid rafts as signaling and sorting platforms, such as extracellular signal-regulated kinase-1/2 (ERK1/2) and heat shock protein 27 (HSP27). Interestingly, exosome uptake appears dependent on unperturbed ERK1/2-HSP27 signaling, and ERK1/2 phosphorylation is under negative influence by CAV1 during internalization of exosomes. These findings significantly advance our general understanding of exosome-mediated uptake and offer potential strategies for how this pathway may be targeted through modulation of CAV1 expression and ERK1/2 signaling.


Journal of Biological Chemistry | 2003

Complexes of Matrilin-1 and Biglycan or Decorin Connect Collagen VI Microfibrils to Both Collagen II and Aggrecan

Charlotte Wiberg; Andreas R. Klatt; Raimund Wagener; Mats Paulsson; John F. Bateman; Dick Heinegård; Matthias Mörgelin

Native supramolecular assemblies containing collagen VI microfibrils and associated extracellular matrix proteins were isolated from Swarm rat chondrosarcoma tissue. Their composition and spatial organization were characterized by electron microscopy and immunological detection of molecular constituents. The small leucine-rich repeat (LRR) proteoglycans biglycan and decorin were bound to the N-terminal region of collagen VI. Chondroadherin, another member of the LRR family, was identified both at the N and C termini of collagen VI. Matrilin-1, -3, and -4 were found in complexes with biglycan or decorin at the N terminus. The interactions between collagen VI, biglycan, decorin, and matrilin-1 were studied in detail and revealed a biglycan/matrilin-1 or decorin/matrilin-1 complex acting as a linkage between collagen VI microfibrils and aggrecan or alternatively collagen II. The complexes between matrilin-1 and biglycan or decorin were also reconstituted in vitro. Colocalization of collagen VI and the different ligands in the pericellular matrix of cultured chondrosarcoma cells supported the physiological relevance of the observed interactions in matrix assembly.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2–mediated heparin-binding EGF signaling in endothelial cells

Katrin J. Svensson; Paulina Kucharzewska; Helena C. Christianson; Stefan Sköld; Tobias Löfstedt; Maria Johansson; Matthias Mörgelin; Johan Bengzon; Wolfram Ruf; Mattias Belting

Highly malignant tumors, such as glioblastomas, are characterized by hypoxia, endothelial cell (EC) hyperplasia, and hypercoagulation. However, how these phenomena of the tumor microenvironment may be linked at the molecular level during tumor development remains ill-defined. Here, we provide evidence that hypoxia up-regulates protease-activated receptor 2 (PAR-2), i.e., a G-protein–coupled receptor of coagulation-dependent signaling, in ECs. Hypoxic induction of PAR-2 was found to elicit an angiogenic EC phenotype and to specifically up-regulate heparin-binding EGF-like growth factor (HB-EGF). Inhibition of HB-EGF by antibody neutralization or heparin treatment efficiently counteracted PAR-2–mediated activation of hypoxic ECs. We show that PAR-2–dependent HB-EGF induction was associated with increased phosphorylation of ERK1/2, and inhibition of ERK1/2 phosphorylation attenuated PAR-2–dependent HB-EGF induction as well as EC activation. Tissue factor (TF), i.e., the major initiator of coagulation-dependent PAR signaling, was substantially induced by hypoxia in several types of cancer cells, including glioblastoma; however, TF was undetectable in ECs even at prolonged hypoxia, which precludes cell-autonomous PAR-2 activation through TF. Interestingly, hypoxic cancer cells were shown to release substantial amounts of TF that was mainly associated with secreted microvesicles with exosome-like characteristics. Vesicles derived from glioblastoma cells were found to trigger TF/VIIa–dependent activation of hypoxic ECs in a paracrine manner. We provide evidence of a hypoxia-induced signaling axis that links coagulation activation in cancer cells to PAR-2–mediated activation of ECs. The identified pathway may constitute an interesting target for the development of additional strategies to treat aggressive brain tumors.


The EMBO Journal | 2006

The contact system--a novel branch of innate immunity generating antibacterial peptides.

Inga-Maria Frick; Per Åkesson; Heiko Herwald; Matthias Mörgelin; Martin Malmsten; Dorit K. Nägler; Lars Björck

Activation of the contact system has two classical consequences: initiation of the intrinsic pathway of coagulation, and cleavage of high molecular weight kininogen (HK) leading to the release of bradykinin, a potent proinflammatory peptide. In human plasma, activation of the contact system at the surface of significant bacterial pathogens was found to result in further HK processing and bacterial killing. A fragment comprising the D3 domain of HK is generated, and within this fragment a sequence of 26 amino acids is mainly responsible for the antibacterial activity. A synthetic peptide covering this sequence kills several bacterial species, also at physiological salt concentration, as effectively as the classical human antibacterial peptide LL‐37. Moreover, in an animal model of infection, inhibition of the contact system promotes bacterial dissemination and growth. These data identify a novel and important role for the contact system in the defence against invasive bacterial infection.


Journal of Immunology | 2006

Streptococcal M Protein: A Multipotent and Powerful Inducer of Inflammation

Lisa I. Påhlman; Matthias Mörgelin; Jana Eckert; Linda Johansson; Wayne Russell; Kristian Riesbeck; Oliver Soehnlein; Lennart Lindbom; Anna Norrby-Teglund; Ralf R. Schumann; Lars Björck; Heiko Herwald

Severe infections with Streptococcus pyogenes, an important human pathogen, are associated with massive inflammatory reactions in the human host. Here we show that streptococcal M protein interacts with TLR2 on human peripheral blood monocytes. As a consequence, monocytes express the cytokines IL-6, IL-1β, and TNF-α. This response is significantly increased in the presence of neutrophil-derived heparin-binding protein (HBP), which costimulates monocytes by interacting with CD11/CD18. Analysis of tissue biopsies from patients with necrotizing fasciitis revealed recruitment of neutrophils and monocytes to the infectious site, combined with the release of HBP. The results show that M protein, in synergy with HBP, evokes an inflammatory response that may contribute to the profound pathophysiological consequences seen in severe streptococcal infections.


Journal of Innate Immunity | 2009

Activation of the Human Contact System on Neutrophil Extracellular Traps

Sonja Oehmcke; Matthias Mörgelin; Heiko Herwald

Pattern recognition is an integral part of the innate immune system. The human contact system has been shown to interact with the surface of many bacterial and fungal pathogens, and once activated leads to the generation of antimicrobial peptides and the proinflammatory mediator bradykinin. Here we show that apart from these surfaces also neutrophil extracellular traps (NETs) provide a surface that allows the binding and activation of the contact system. In addition, we present evidence that M1 protein, a streptococcal surface protein, in concert with human fibrinogen triggers polymorphonuclear neutrophils to form NETs.

Collaboration


Dive into the Matthias Mörgelin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Björck

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge