Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias Nagler is active.

Publication


Featured researches published by Matthias Nagler.


Cell | 2016

1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana

Carlos Alonso-Blanco; Jorge Andrade; Claude Becker; Felix Bemm; Joy Bergelson; Karsten M. Borgwardt; Jun Cao; Eunyoung Chae; Todd M. Dezwaan; Wei Ding; Joseph R. Ecker; Moises Exposito-Alonso; Ashley Farlow; Joffrey Fitz; Xiangchao Gan; Dominik Grimm; Angela M. Hancock; Stefan R. Henz; Svante Holm; Matthew Horton; Mike Jarsulic; Randall A. Kerstetter; Arthur Korte; Pamela Korte; Christa Lanz; Cheng-Ruei Lee; Dazhe Meng; Todd P. Michael; Richard Mott; Ni Wayan Muliyati

Summary Arabidopsis thaliana serves as a model organism for the study of fundamental physiological, cellular, and molecular processes. It has also greatly advanced our understanding of intraspecific genome variation. We present a detailed map of variation in 1,135 high-quality re-sequenced natural inbred lines representing the native Eurasian and North African range and recently colonized North America. We identify relict populations that continue to inhabit ancestral habitats, primarily in the Iberian Peninsula. They have mixed with a lineage that has spread to northern latitudes from an unknown glacial refugium and is now found in a much broader spectrum of habitats. Insights into the history of the species and the fine-scale distribution of genetic diversity provide the basis for full exploitation of A. thaliana natural variation through integration of genomes and epigenomes with molecular and non-molecular phenotypes.


Molecular & Cellular Proteomics | 2014

Comprehensive Cell-specific Protein Analysis in Early and Late Pollen Development from Diploid Microsporocytes to Pollen Tube Growth

Till Ischebeck; Luis Valledor; David Lyon; Stephanie Gingl; Matthias Nagler; Mónica Meijón; Volker Egelhofer; Wolfram Weckwerth

Pollen development in angiosperms is one of the most important processes controlling plant reproduction and thus productivity. At the same time, pollen development is highly sensitive to environmental fluctuations, including temperature, drought, and nutrition. Therefore, pollen biology is a major focus in applied studies and breeding approaches for improving plant productivity in a globally changing climate. The most accessible developmental stages of pollen are the mature pollen and the pollen tubes, and these are thus most frequently analyzed. To reveal a complete quantitative proteome map, we additionally addressed the very early stages, analyzing eight stages of tobacco pollen development: diploid microsporocytes, meiosis, tetrads, microspores, polarized microspores, bipolar pollen, desiccated pollen, and pollen tubes. A protocol for the isolation of the early stages was established. Proteins were extracted and analyzed by means of a new gel LC-MS fractionation protocol. In total, 3817 protein groups were identified. Quantitative analysis was performed based on peptide count. Exceedingly stage-specific differential protein regulation was observed during the conversion from the sporophytic to the gametophytic proteome. A map of highly specialized functionality for the different stages could be revealed from the metabolic activity and pronounced differentiation of proteasomal and ribosomal protein complex composition up to protective mechanisms such as high levels of heat shock proteins in the very early stages of development.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Proteomics and comparative genomics of Nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers.

Melina Kerou; Pierre Offre; Luis Valledor; Sophie S. Abby; Michael Melcher; Matthias Nagler; Wolfram Weckwerth; Christa Schleper

Significance Ammonia-oxidizing archaea (AOA), key players in global biogeochemical cycles, represent a heterogeneous group with a broad environmental distribution. Understanding their activity and physiology is of great importance due to the impact of the overuse of agricultural fertilizers on the N cycle and the production of the greenhouse gas N2O during nitrification. Despite their prominent ecological role, little is known about the fundamental metabolic processes of AOA. Here, we show that AOA of marine and terrestrial environments share unique and well-conserved pathways of carbon and nitrogen metabolism, and we raise hypotheses about missing steps in these pathways. Our approach also highlights the extensive environmental adaptations of the soil clade, including the capacity for cell surface modifications, carbohydrate conversions, detoxification, and biofilm formation. Ammonia-oxidizing archaea (AOA) are among the most abundant microorganisms and key players in the global nitrogen and carbon cycles. They share a common energy metabolism but represent a heterogeneous group with respect to their environmental distribution and adaptions, growth requirements, and genome contents. We report here the genome and proteome of Nitrososphaera viennensis EN76, the type species of the archaeal class Nitrososphaeria of the phylum Thaumarchaeota encompassing all known AOA. N. viennensis is a soil organism with a 2.52-Mb genome and 3,123 predicted protein-coding genes. Proteomic analysis revealed that nearly 50% of the predicted genes were translated under standard laboratory growth conditions. Comparison with genomes of closely related species of the predominantly terrestrial Nitrososphaerales as well as the more streamlined marine Nitrosopumilales [Candidatus (Ca.) order] and the acidophile “Ca. Nitrosotalea devanaterra” revealed a core genome of AOA comprising 860 genes, which allowed for the reconstruction of central metabolic pathways common to all known AOA and expressed in the N. viennensis and “Ca. Nitrosopelagicus brevis” proteomes. Concomitantly, we were able to identify candidate proteins for as yet unidentified crucial steps in central metabolisms. In addition to unraveling aspects of core AOA metabolism, we identified specific metabolic innovations associated with the Nitrososphaerales mediating growth and survival in the soil milieu, including the capacity for biofilm formation, cell surface modifications and cell adhesion, and carbohydrate conversions as well as detoxification of aromatic compounds and drugs.


Journal of Proteomics | 2016

The variations in the nuclear proteome reveal new transcription factors and mechanisms involved in UV stress response in Pinus radiata.

Jesús Pascual; Sara Alegre; Matthias Nagler; Mónica Escandón; María Luz Annacondia; Wolfram Weckwerth; Luis Valledor; María Jesús Cañal

UNLABELLED The importance of UV stress and its side-effects over the loss of plant productivity in forest species demands a deeper understanding of how pine trees respond to UV irradiation. Although the response to UV stress has been characterized at system and cellular levels, the dynamics within the nuclear proteome triggered by UV is still unknown despite that they are essential for gene expression and regulation of plant physiology. To fill this gap this work aims to characterize the variations in the nuclear proteome as a response to UV irradiation by using state-of-the-art mass spectrometry-based methods combined with novel bioinformatics workflows. The combination of SEQUEST, de novo sequencing, and novel annotation pipelines allowed cover sensing and transduction pathways, endoplasmic reticulum-related mechanisms and the regulation of chromatin dynamism and gene expression by histones, histone-like NF-Ys, and other transcription factors previously unrelated to this stress source, as well as the role of alternative splicing and other mechanisms involved in RNA translation and protein synthesis. The determination of 33 transcription factors, including NF-YB13, Pp005698_3 (NF-YB) and Pr009668_2 (WD-40), which are correlated to stress responsive mechanisms like an increased accumulation of photoprotective pigments and reduced photosynthesis, pointing them as strong candidate biomarkers for breeding programs aimed to improve UV resistance of pine trees. SIGNIFICANCE The description of the nuclear proteome of Pinus radiata combining a classic approach based on the use of SEQUEST and the use of a mass accuracy precursor alignment (MAPA) allowed an unprecedented protein coverage. This workflow provided the methodological basis for characterizing the changes in the nuclear proteome triggered by UV irradiation, allowing the depiction of the nuclear events involved in stress response and adaption. The relevance of some of the discovered proteins will suppose a major advance in stress biology field, also providing a set of transcription factors that can be considered as strong biomarker candidates to select trees more tolerant to UV radiation in forest upgrade programs.


BMC Plant Biology | 2015

Integrative molecular profiling indicates a central role of transitory starch breakdown in establishing a stable C/N homeostasis during cold acclimation in two natural accessions of Arabidopsis thaliana

Matthias Nagler; Ella Nukarinen; Wolfram Weckwerth

BackgroundThe variation of growth and cold tolerance of two natural Arabidopsis accessions, Cvi (cold sensitive) and Rschew (cold tolerant), was analysed on a proteomic, phosphoproteomic and metabolomic level to derive characteristic information about genotypically distinct strategies of metabolic reprogramming and growth maintenance during cold acclimation.ResultsGrowth regulation before and after a cold acclimation period was monitored by recording fresh weight of leaf rosettes. Significant differences in the shoot fresh weight of Cvi and Rschew were detected both before and after acclimation to low temperature. During cold acclimation, starch levels were found to accumulate to a significantly higher level in Cvi compared to Rschew. Concomitantly, statistical analysis revealed a cold-induced decrease of beta-amylase 3 (BAM3; AT4G17090) in Cvi but not in Rschew. Further, only in Rschew we observed an increase of the protein level of the debranching enzyme isoamylase 3 (ISA3; AT4G09020). Additionally, the cold response of both accessions was observed to severely affect ribosomal complexes, but only Rschew showed a pronounced accumulation of carbon and nitrogen compounds. The abundance of the Cold Regulated (COR) protein COR78 (AT5G52310) as well as its phosphorylation was observed to be positively correlated with the acclimation state of both accessions. In addition, transcription factors being involved in growth and developmental regulation were found to characteristically separate the cold sensitive from the cold tolerant accession. Predicted protein-protein interaction networks (PPIN) of significantly changed proteins during cold acclimation allowed for a differentiation between both accessions. The PPIN revealed the central role of carbon/nitrogen allocation and ribosomal complex formation to establish a new cold-induced metabolic homeostasis as also observed on the level of the metabolome and proteome.ConclusionOur results provide evidence for a comprehensive multi-functional molecular interaction network orchestrating growth regulation and cold acclimation in two natural accessions of Arabidopsis thaliana. The differential abundance of beta-amylase 3 and isoamylase 3 indicates a central role of transitory starch degradation in the coordination of growth regulation and the development of stress tolerance. Finally, our study indicates naturally occurring differential patterns of C/N balance and protein synthesis during cold acclimation.


Journal of Proteomics | 2016

Comprehensive tissue-specific proteome analysis of drought stress responses in Pennisetum glaucum (L.) R. Br. (Pearl millet)☆

Arindam Ghatak; Palak Chaturvedi; Matthias Nagler; Roustan; David Lyon; Gert Bachmann; W Postl; A Schröfl; Neetin Desai; Rajeev K. Varshney; Wolfram Weckwerth

UNLABELLED Pearl millet is the fifth most important cereal crop worldwide and cultivated especially by small holder farmers in arid and semi-arid regions because of its drought and salt tolerance. The molecular mechanisms of drought stress tolerance in Pennisetum remain elusive. We have used a shotgun proteomics approach to investigate protein signatures from different tissues under drought and control conditions. Drought stressed plants showed significant changes in stomatal conductance and increased root growth compared to the control plants. Root, leaf and seed tissues were harvested and 2281 proteins were identified and quantified in total. Leaf tissue showed the largest number of significant changes (120), followed by roots (25) and seeds (10). Increased levels of root proteins involved in cell wall-, lipid-, secondary- and signaling metabolism and the concomitantly observed increased root length point to an impaired shoot-root communication under drought stress. The harvest index (HI) showed a significant reduction under drought stress. Proteins with a high correlation to the HI were identified using sparse partial least square (sPLS) analysis. Considering the importance of Pearl millet as a stress tolerant food crop, this study provides a first reference data set for future investigations of the underlying molecular mechanisms. BIOLOGICAL SIGNIFICANCE Drought stress is the most limiting factor for plant growth and crop production worldwide. At the same time drought susceptible cereal crops are among the largest producers worldwide. In contrast, Pearl millet is a drought and salt tolerant cereal crop especially used in arid and semi-arid regions by small farmers. The multifactorial molecular mechanisms of this unique drought tolerance are not known. Here, we employ shotgun proteomics for a first characterization of the Pearl millet drought stress proteome. The experimental setup and the data set generated from this study reveal comprehensive physiological and proteomic responses of the drought stressed Pearl millet plants. Our study reveals statistically significant tissue-specific protein signatures during the adaptation to drought conditions. Thus, the work provides a first reference study of the drought stress proteome and related drought responsive proteins (DRPs) in Pearl millet.


Frontiers in Molecular Biosciences | 2016

A Strategy for Functional Interpretation of Metabolomic Time Series Data in Context of Metabolic Network Information.

Lisa Fürtauer; Matthias Nagler; Jakob Weiszmann; Wolfram Weckwerth

The functional connection of experimental metabolic time series data with biochemical network information is an important, yet complex, issue in systems biology. Frequently, experimental analysis of diurnal, circadian, or developmental dynamics of metabolism results in a comprehensive and multidimensional data matrix comprising information about metabolite concentrations, protein levels, and/or enzyme activities. While, irrespective of the type of organism, the experimental high-throughput analysis of the transcriptome, proteome, and metabolome has become a common part of many systems biological studies, functional data integration in a biochemical and physiological context is still challenging. Here, an approach is presented which addresses the functional connection of experimental time series data with biochemical network information which can be inferred, for example, from a metabolic network reconstruction. Based on a time-continuous and variance-weighted regression analysis of experimental data, metabolic functions, i.e., first-order derivatives of metabolite concentrations, were related to time-dependent changes in other biochemically relevant metabolic functions, i.e., second-order derivatives of metabolite concentrations. This finally revealed time points of perturbed dependencies in metabolic functions indicating a modified biochemical interaction. The approach was validated using previously published experimental data on a diurnal time course of metabolite levels, enzyme activities, and metabolic flux simulations. To support and ease the presented approach of functional time series analysis, a graphical user interface including a test data set and a manual is provided which can be run within the numerical software environment Matlab®.


Genome Announcements | 2014

Draft Genome Sequence of the Growth-Promoting Endophyte Paenibacillus sp. P22, Isolated from Populus

Anne M. Hanak; Matthias Nagler; Thomas Weinmaier; Xiaoliang Sun; Lena Fragner; Clarissa Schwab; Thomas Rattei; Kristina Ulrich; Dietrich Ewald; Marion Engel; Michael Schloter; Romana Bittner; Christa Schleper; Wolfram Weckwerth

ABSTRACT Paenibacillus sp. P22 is a Gram-negative facultative anaerobic endospore-forming bacterium isolated from poplar hybrid 741 (♀[Populus alba × (P. davidiana + P. simonii) × P. tomentosa]). This bacterium shows strong similarities to Paenibacillus humicus, and important growth-promoting effects on in vitro grown explants of poplar hybrid 741 have been described.


Data in Brief | 2016

Dataset of UV induced changes in nuclear proteome obtained by GeLC-Orbitrap/MS in Pinus radiata needles.

Sara Alegre; Jesús Pascual; Matthias Nagler; Wolfram Weckwerth; María Jesús Cañal; Luis Valledor

Although responses to UV stress have been characterised at system and cellular levels, the dynamics of the nuclear proteome triggered in this situation are still unknown, despite its essential role in regulating gene expression and in last term plant physiology. To fill this gap, we characterised the variations in the nuclear proteome after 2 h and 16 h (8 h/day) of UV irradiation by using state-of-the-art mass spectrometry-based shotgun proteomics methods combined with novel bioinformatics workflows that were employed in the manuscript entitled “The variations in the nuclear proteome reveal new transcription factors and mechanisms involved in UV stress response in Pinus radiata” (Pascual et al., 2016) [1]. We employed in-gel digestion followed by a 120 min gradient prior to MS analysis. Data was processed following two approaches: a database dependent employing the SEQUEST algorithm and custom databases, and a database independent by mass accuracy precursor alignment (MAPA). 388 proteins were identified by SEQUEST search and 9094 m/z were quantified by MAPA. Significant m/z were de novo sequenced using the Novor algorithm. We present here the complete datasets and the analysis workflow.


Cell | 2016

Epigenomic Diversity in a Global Collection of Arabidopsis thaliana Accessions

Taiji Kawakatsu; Shao-shan Carol Huang; Florian Jupe; Eriko Sasaki; Robert J. Schmitz; Mark A. Urich; Rosa Castanon; Joseph R. Nery; Cesar Barragan; Yupeng He; Huaming Chen; Manu J. Dubin; Cheng-Ruei Lee; Congmao Wang; Felix Bemm; Claude Becker; Ryan C. O’Neil; Ronan C. O’Malley; Danjuma Quarless; Carlos Alonso-Blanco; Jorge Andrade; Joy Bergelson; Karsten Borgwardt; Eunyoung Chae; Todd M. Dezwaan; Wei Ding; Joseph R. Ecker; Moises Exposito-Alonso; Ashley Farlow; Joffrey Fitz

Collaboration


Dive into the Matthias Nagler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Alonso-Blanco

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge