Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias Platzer is active.

Publication


Featured researches published by Matthias Platzer.


Nature Genetics | 2007

A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1.

Jochen Hampe; Andre Franke; Philip Rosenstiel; Andreas Till; Markus Teuber; Klaus Huse; Mario Albrecht; Gabriele Mayr; Francisco M. De La Vega; Jason Briggs; Simone Günther; Natalie J. Prescott; Clive M. Onnie; Robert Häsler; Bence Sipos; Ulrich R. Fölsch; Thomas Lengauer; Matthias Platzer; Christopher G. Mathew; Michael Krawczak; Stefan Schreiber

We performed a genome-wide association study of 19,779 nonsynonymous SNPs in 735 individuals with Crohn disease and 368 controls. A total of 7,159 of these SNPs were informative. We followed up on all 72 SNPs with P ≤ 0.01 with an allele-based disease association test in 380 independent Crohn disease trios, 498 Crohn disease singleton cases and 1,032 controls. Disease association of rs2241880 in the autophagy-related 16-like 1 gene (ATG16L1) was replicated in these samples (P = 4.0 × 10−8) and confirmed in a UK case-control sample (P = 0.0004). By haplotype and regression analysis, we found that marker rs2241880, a coding SNP (T300A), carries virtually all the disease risk exerted by the ATG16L1 locus. The ATG16L1 gene encodes a protein in the autophagosome pathway that processes intracellular bacteria. We found a statistically significant interaction with respect to Crohn disease risk between rs2241880 and the established CARD15 susceptibility variants (P = 0.039). Together with the lack of association between rs2241880 and ulcerative colitis (P > 0.4), these data suggest that the underlying biological process may be specific to Crohn disease.


Cell | 1998

NIBRIN, A NOVEL DNA DOUBLE-STRAND BREAK REPAIR PROTEIN, IS MUTATED IN NIJMEGEN BREAKAGE SYNDROME

Raymonda Varon; Christine S. Vissinga; Matthias Platzer; Karen Cerosaletti; Krystyna H. Chrzanowska; Kathrin Saar; Georg Beckmann; Eva Seemanova; Paul R. Cooper; Norma J. Nowak; Markus Stumm; Corry M. R. Weemaes; Richard A. Gatti; Richard Wilson; Martin Digweed; André Rosenthal; Karl Sperling; Patrick Concannon; André Reis

Nijmegen breakage syndrome (NBS) is an autosomal recessive chromosomal instability syndrome characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition. Cells from NBS patients are hypersensitive to ionizing radiation with cytogenetic features indistinguishable from ataxia telangiectasia. We describe the positional cloning of a gene encoding a novel protein, nibrin. It contains two modules found in cell cycle checkpoint proteins, a forkhead-associated domain adjacent to a breast cancer carboxy-terminal domain. A truncating 5 bp deletion was identified in the majority of NBS patients, carrying a conserved marker haplotype. Five further truncating mutations were identified in patients with other distinct haplotypes. The domains found in nibrin and the NBS phenotype suggest that this disorder is caused by defective responses to DNA double-strand breaks.


The Plant Cell | 2011

Unlocking the Barley Genome by Chromosomal and Comparative Genomics

Klaus F. X. Mayer; Mihaela Martis; Peter E. Hedley; Hana Šimková; Hui Liu; Jenny Morris; Burkhard Steuernagel; Stephan Roessner; Heidrun Gundlach; Marie Kubaláková; Pavla Suchánková; Florent Murat; Marius Felder; Thomas Nussbaumer; Andreas Graner; Jérôme Salse; Takashi R. Endo; Hiroaki Sakai; Tsuyoshi Tanaka; Takeshi Itoh; Kazuhiro Sato; Matthias Platzer; Takashi Matsumoto; Uwe Scholz; Jaroslav Doležel; Robbie Waugh; Nils Stein

Survey sequence and array hybridization data from flow-sorted barley chromosomes were integrated using a comparative genomics model to define an ordered gene map of the barley genome that contains approximately two-thirds of its estimated 32000 genes. The resulting high-resolution framework facilitated a genome-wide structural analysis of the barley genome and a detailed comparative analysis with wheat. We used a novel approach that incorporated chromosome sorting, next-generation sequencing, array hybridization, and systematic exploitation of conserved synteny with model grasses to assign ~86% of the estimated ~32,000 barley (Hordeum vulgare) genes to individual chromosome arms. Using a series of bioinformatically constructed genome zippers that integrate gene indices of rice (Oryza sativa), sorghum (Sorghum bicolor), and Brachypodium distachyon in a conserved synteny model, we were able to assemble 21,766 barley genes in a putative linear order. We show that the barley (H) genome displays a mosaic of structural similarity to hexaploid bread wheat (Triticum aestivum) A, B, and D subgenomes and that orthologous genes in different grasses exhibit signatures of positive selection in different lineages. We present an ordered, information-rich scaffold of the barley genome that provides a valuable and robust framework for the development of novel strategies in cereal breeding.


Nature Genetics | 2005

Sarcoidosis is associated with a truncating splice site mutation in BTNL2.

Ruta Valentonyte; Jochen Hampe; Klaus Huse; Philip Rosenstiel; Mario Albrecht; Annette Stenzel; Marion Nagy; Karoline I. Gaede; Andre Franke; Robert Haesler; Andreas Koch; Thomas Lengauer; Dirk Seegert; Norbert Reiling; Stefan Ehlers; Eberhard Schwinger; Matthias Platzer; Michael Krawczak; Joachim Müller-Quernheim; Manfred Schürmann; Stefan Schreiber

Sarcoidosis is a polygenic immune disorder with predominant manifestation in the lung. Genome-wide linkage analysis previously indicated that the extended major histocompatibility locus on chromosome 6p was linked to susceptibility to sarcoidosis. Here, we carried out a systematic three-stage SNP scan of 16.4 Mb on chromosome 6p21 in as many as 947 independent cases of familial and sporadic sarcoidosis and found that a 15-kb segment of the gene butyrophilin-like 2 (BTNL2) was associated with the disease. The primary disease-associated variant (rs2076530; PTDT = 3 × 10−6, Pcase-control = 1.1 × 10−8; replication PTDT = 0.0018, Pcase-control = 1.8 × 10−6) represents a risk factor that is independent of variation in HLA-DRB1. BTNL2 is a member of the immunoglobulin superfamily and has been implicated as a costimulatory molecule involved in T-cell activation on the basis of its homology to B7-1. The G → A transition constituting rs2076530 leads to the use of a cryptic splice site located 4 bp upstream of the affected wild-type donor site. Transcripts of the risk-associated allele have a premature stop in the spliced mRNA. The resulting protein lacks the C-terminal IgC domain and transmembrane helix, thereby disrupting the membrane localization of the protein, as shown in experiments using green fluorescent protein and V5 fusion proteins.


Nature Biotechnology | 2008

Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection

TuAnh Nguyen; Keishi Ishida; Holger Jenke-Kodama; Elke Dittmann; Cristian Gurgui; Thomas Hochmuth; Matthias Platzer; Christian Hertweck; Jörn Piel

Modular polyketide synthases (PKSs) are giant bacterial enzymes that synthesize many polyketides of therapeutic value. In contrast to PKSs that provide acyltransferase (AT) activities in cis, trans-AT PKSs lack integrated AT domains and exhibit unusual enzymatic features with poorly understood functions in polyketide assembly. This has retarded insight into the assembly of products such as mupirocin, leinamycin and bryostatin 1. We show that trans-AT PKSs evolved in a fundamentally different fashion from cis-AT systems, through horizontal recruitment and assembly of substrate-specific ketosynthase (KS) domains. The insights obtained from analysis of these KS mosaics will facilitate both the discovery of novel polyketides by genome mining, as we demonstrate for the thailandamides of Burkholderia thailandensis, and the extraction of chemical information from short trans-AT PCR products, as we show using metagenomic DNA of marine sponges. Our data also suggest new strategies for dissecting polyketide biosynthetic pathways and engineering polyketide assembly.


American Journal of Human Genetics | 2004

Melanocortin-4 Receptor Gene Variant I103 Is Negatively Associated with Obesity

Frank Geller; Kathrin Reichwald; Astrid Dempfle; Thomas Illig; Caren Vollmert; Stephan Herpertz; Winfried Siffert; Matthias Platzer; Claudia Hess; Thomas Gudermann; Heike Biebermann; H.-Erich Wichmann; Helmut Schäfer; Anke Hinney; Johannes Hebebrand

Several rare mutations in the melanocortin-4 receptor gene (MC4R) predispose to obesity. For the most common missense variant V103I (rs2229616), however, the previously reported similar carrier frequencies in obese and nonobese individuals are in line with in vitro studies, which have not shown a functional implication of this variant. In the present study, we initially performed a transmission/disequilibrium test on 520 trios with obesity, and we observed a lower transmission rate of the I103 allele (P=.017), which was an unexpected finding. Therefore, we initiated two large case-control studies (N=2,334 and N=661) and combined the data with those from 12 published studies, for a total of 7,713 individuals. The resulting meta-analysis provides evidence for a negative association of the I103 allele with obesity (odds ratio 0.69; 95% confidence interval 0.50-0.96; P=.03), mainly comprising samples of European origin. Additional screening of four other ethnic groups showed comparable I103 carrier frequencies well below 10%. Genomic sequencing of the MC4R gene revealed three polymorphisms in the noncoding region that displayed strong linkage disequilibrium with V103I. In our functional in vitro assays, the variant was indistinguishable from the wild-type allele, as was the result in previous studies. This report on an SNP/haplotype that is negatively associated with obesity expands the successful application of meta-analysis of modest effects in common diseases to a variant with a carrier frequency well below 10%. The respective protective effect against obesity implies that variation in the MC4R gene entails both loss and gain of function.


Nature | 2017

A chromosome conformation capture ordered sequence of the barley genome

Martin Mascher; Heidrun Gundlach; Axel Himmelbach; Sebastian Beier; Sven O. Twardziok; Thomas Wicker; Volodymyr Radchuk; Christoph Dockter; Peter E. Hedley; Joanne Russell; Micha Bayer; Luke Ramsay; Hui Liu; Georg Haberer; Xiao-Qi Zhang; Qisen Zhang; Roberto A. Barrero; Lin Li; Marco Groth; Marius Felder; Alex Hastie; Hana Šimková; Helena Staňková; Jan Vrána; Saki Chan; María Muñoz-Amatriaín; Rachid Ounit; Steve Wanamaker; Daniel M. Bolser; Christian Colmsee

Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley (Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlighting regions vulnerable to genetic erosion.


The Plant Cell | 2011

Frequent Gene Movement and Pseudogene Evolution Is Common to the Large and Complex Genomes of Wheat, Barley, and Their Relatives

Thomas Wicker; Klaus F. X. Mayer; Heidrun Gundlach; Mihaela Martis; Burkhard Steuernagel; Uwe Scholz; Hana Šimková; Marie Kubaláková; Frédéric Choulet; Matthias Platzer; Catherine Feuillet; Tzion Fahima; Hikmet Budak; Jaroslav Dolezel; Beat Keller; Nils Stein

This work uses survey sequence to examine the genic content of hexaploid wheat group 1 chromosomes, in comparison with barley, and other model grass genomes (rice, Brachypodium, and sorghum), finding that wheat and barley accumulate dramatically more nonsyntenic genes, many of which appear to be pseudogenes. All six arms of the group 1 chromosomes of hexaploid wheat (Triticum aestivum) were sequenced with Roche/454 to 1.3- to 2.2-fold coverage and compared with similar data sets from the homoeologous chromosome 1H of barley (Hordeum vulgare). Six to ten thousand gene sequences were sampled per chromosome. These were classified into genes that have their closest homologs in the Triticeae group 1 syntenic region in Brachypodium, rice (Oryza sativa), and/or sorghum (Sorghum bicolor) and genes that have their homologs elsewhere in these model grass genomes. Although the number of syntenic genes was similar between the homologous groups, the amount of nonsyntenic genes was found to be extremely diverse between wheat and barley and even between wheat subgenomes. Besides a small core group of genes that are nonsyntenic in other grasses but conserved among Triticeae, we found thousands of genic sequences that are specific to chromosomes of one single species or subgenome. By examining in detail 50 genes from chromosome 1H for which BAC sequences were available, we found that many represent pseudogenes that resulted from transposable element activity and double-strand break repair. Thus, Triticeae seem to accumulate nonsyntenic genes frequently. Since many of them are likely to be pseudogenes, total gene numbers in Triticeae are prone to pronounced overestimates.


Nature Genetics | 2008

SNP and haplotype mapping for genetic analysis in the rat.

Katrin Saar; Alfred Beck; Mt Bihoreau; Ewan Birney; Yuan Chen; Edwin Cuppen; S Demonchy; Joaquín Dopazo; Paul Flicek; Mario Foglio; Asao Fujiyama; Ivo Gut; Dominique Gauguier; R Guigo; Guryev; Matthias Heinig; Oliver Hummel; Niels Jahn; Sven Klages; Kren; Michael Kube; Heiner Kuhl; Takashi Kuramoto; Yoko Kuroki; Doris Lechner; Ya Lee; Nuria Lopez-Bigas; Gm Lathrop; Tomoji Mashimo; Ignacio Medina

The laboratory rat is one of the most extensively studied model organisms. Inbred laboratory rat strains originated from limited Rattus norvegicus founder populations, and the inherited genetic variation provides an excellent resource for the correlation of genotype to phenotype. Here, we report a survey of genetic variation based on almost 3 million newly identified SNPs. We obtained accurate and complete genotypes for a subset of 20,238 SNPs across 167 distinct inbred rat strains, two rat recombinant inbred panels and an F2 intercross. Using 81% of these SNPs, we constructed high-density genetic maps, creating a large dataset of fully characterized SNPs for disease gene mapping. Our data characterize the population structure and illustrate the degree of linkage disequilibrium. We provide a detailed SNP map and demonstrate its utility for mapping of quantitative trait loci. This community resource is openly available and augments the genetic tools for this workhorse of physiological studies.


Nature Genetics | 2004

Widespread occurrence of alternative splicing at NAGNAG acceptors contributes to proteome plasticity.

Michael Hiller; Klaus Huse; Karol Szafranski; Niels Jahn; Jochen Hampe; Stefan Schreiber; Rolf Backofen; Matthias Platzer

Splice acceptors with the genomic NAGNAG motif may cause NAG insertion-deletions in transcripts, occur in 30% of human genes and are functional in at least 5% of human genes. We found five significant biases indicating that their distribution is nonrandom and that they are evolutionarily conserved and tissue-specific. Because of their subtle effects on mRNA and protein structures, these splice acceptors are often overlooked or underestimated, but they may have a great impact on biology and disease.

Collaboration


Dive into the Matthias Platzer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Groth

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Karol Szafranski

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jochen Hampe

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge