Matthias Port
University of Ulm
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthias Port.
Molecular Cancer | 2011
Matthias Port; Stephanie Glaesener; Christian Ruf; Armin Riecke; Carsten Bokemeyer; Viktor Meineke; Friedemann U. Honecker; Michael Abend
BackgroundWe compared microRNA expression patterns in three cisplatin resistant sublines derived from paternal cisplatin sensitive germ cell tumor cell lines in order to improve our understanding of the mechanisms of cisplatin resistance.MethodsThree cisplatin resistant sublines (NTERA-2-R, NCCIT-R, 2102EP-R) showing 2.7-11.3-fold increase in drug resistance after intermittent exposure to increasing doses of cisplatin were compared to their parental counterparts, three well established relatively cisplatin sensitive germ cell tumor cell lines (NTERA-2, NCCIT, 2102EP). Cells were cultured and total RNA was isolated from all 6 cell lines in three independent experiments. RNA was converted into cDNA and quantitative RT-PCR was run using 384 well low density arrays covering almost all (738) known microRNA species of human origin.ResultsAltogether 72 of 738 (9.8%) microRNAs appeared differentially expressed between sensitive and resistant cell line pairs (NTERA-2R/NTERA-2 = 43, NCCIT-R/NCCIT = 53, 2102EP-R/2102EP = 15) of which 46.7-95.3% were up-regulated (NTERA-2R/NTERA-2 = 95.3%, NCCIT-R/NCCIT = 62.3%, 2102EP-R/2102EP = 46.7%). The number of genes showing differential expression in more than one of the cell line pairs was 34 between NTERA-2R/NTERA-2 (79%) and NCCIT-R/NCCIT (64%), and 3 and 4, respectively, between these two cell lines and 2102EP-R/2102EP (about 27%). Only the has-miR-10b involved in breast cancer invasion and metastasis and has-miR-512-3p appeared to be up-regulated (2-3-fold) in all three cell lines. The hsa-miR-371-373 cluster (counteracting cellular senescence and linked with differentiation potency), as well as hsa-miR-520c/-520h (inhibiting the tumor suppressor p21) were 3.9-16.3 fold up-regulated in two of the three cisplatin resistant cell lines. Several new micro-RNA species missing an annotation towards cisplatin resistance could be identified. These were hsa-miR-512-3p/-515/-517/-518/-525 (up to 8.1-fold up-regulated) and hsa-miR-99a/-100/-145 (up to 10-fold down-regulated).ConclusionExamining almost all known human micro-RNA species confirmed the miR-371-373 cluster as a promising target for explaining cisplatin resistance, potentially by counteracting wild-type P53 induced senescence or linking it with the potency to differentiate. Moreover, we describe for the first time an association of the up-regulation of micro-RNA species such as hsa-miR-512-3p/-515/-517/-518/-525 and down-regulation of hsa-miR-99a/-100/-145 with a cisplatin resistant phenotype in human germ cell tumors. Further functional analyses are warranted to gain insight into their role in drug resistance.
Radiation Research | 2007
Matthias Port; C. Boltze; Y. Wang; B. Röper; Viktor Meineke; Michael Abend
Abstract Port, M., Boltze, C., Wang, Y., Röper, B., Meineke, V. and Abend, M. A Radiation-Induced Gene Signature Distinguishes Post-Chernobyl from Sporadic Papillary Thyroid Cancers. Radiat. Res. 168, 639–649 (2007). We investigated selected gene targets to differentiate radiation-induced papillary thyroid cancers (PTCs) from other etiologies. Total RNA was isolated from 11 post-Chernobyl PTCs and 41 sporadic PTCs characterized by a more aggressive tumor type and lacking a radiation exposure history. RNA from 10 tumor samples from both groups was pooled and hybridized separately on a whole genome microarray for screening. Then 92 selected gene targets were examined quantitatively on each tumor sample using an RTQ-PCR-based low-density array (LDA). Screening for more than fivefold differences in gene expression between the groups by microarray detected 646 up-regulated and 677 down-regulated genes. Categorization of these genes revealed a significant (P < 0.0006) over-representation of the number of up-regulated genes coding for oxidoreductases, G-proteins and growth factors, while the number of genes coding for immunoglobulin appeared to be significantly down-regulated. With the LDA, seven genes (SFRP1, MMP1, ESM1, KRTAP2-1, COL13A1, BAALC and PAGE1) made a complete differentiation between the groups possible. Gene expression patterns known to be associated with a more aggressive tumor type in older patients appeared to be more pronounced in post-Chernobyl PTC, thus underlining the known aggressiveness of radiation-induced PTC. Seven genes were found that completely distinguished post-Chernobyl (PTC) from sporadic PTC.
Stem Cells | 2009
Theodor M. Fliedner; Nelson J. Chao; Judith L. Bader; Axel Boettger; Cullen Case; John P. Chute; Dennis L. Confer; Arnold Ganser; Gorin Nc; Patrick Gourmelon; Dieter H. Graessle; Robert Krawisz; Viktor Meineke; Dietger Niederwieser; Matthias Port; Ray Powles; Bhawna Sirohi; David M. Weinstock; Albert Wiley; C. Norman Coleman
The concern of the public regarding terrorist actions involving nuclear emergencies resulted in the reopening of the discussion regarding the best ways to cope with the inevitable health impairments. Medical experts from the US and from Europe considered it of importance to harmonize at an international level the diagnostic and therapeutic approaches regarding the radiation‐induced health impairments. The present contribution is the result of the first U.S./European Consultation Workshop addressing approaches to radiation emergency preparedness and assistance, which was held recently at Ulm University, Ulm, Germany. Discussions dealt with the assessment of the extent of damage after total body exposure and, in particular, the quantity and quality of the damage to the hematopoietic stem cell pool. Secondly, the pathogenesis of the multiorgan failure was considered because of the organ‐to‐organ interactions. Thirdly, approaches were considered to harmonize the “triage‐methods” used on an international level using the “Response Category” approach as developed for the European Communities. These discussions lead to the conclusion that there is a strong need for continuing education of physicians, nurses, and support personnel to address the issues posed by the management of patients suffering from radiation syndromes. Finally, the discussions expressed the need for more international cooperation in research and development of more refined methods to treat patients with any type of radiation syndromes. Stem Cells 2009;27:1205–1211
Thyroid | 2014
Li Xu; Matthias Port; Stefano Landi; Federica Gemignani; Monica Cipollini; Rossella Elisei; Lilia Goudeva; Jörg Andreas Müller; Kai Nerlich; Giovanni Pellegrini; Christoph Reiners; Cristina Romei; Robert Schwab; Michael Abend; Erich M. Sturgis
BACKGROUND There is a correlation between temporal trends of obesity prevalence and papillary thyroid cancer (PTC) incidence in the United States. Obesity is a well-recognized risk factor for many cancers, but there are few studies on the association between obesity and PTC risk. We investigated the association between anthropometric measurements and PTC risk using pooled individual data from three case-control populations. METHODS Height and weight information were obtained from three independent case-control studies, including 1917 patients with PTC (1360 women and 557 men) and 2127 cancer-free controls from the United States, Italy, and Germany. Body mass index (BMI), body fat percentage, and body surface area (BSA) were calculated. An unconditional logistic regression model was used to calculate odds ratios (ORs) and confidence intervals (CIs) with respect to risk of PTC, adjusted by age, sex, race/ethnicity, and study site. RESULTS In the pooled population, for both men and women, an increased risk of PTC was found to be associated with greater weight, BMI, body fat percentage, and BSA, whereas a reduced risk of PTC was associated with greater height, in the pooled population for both men and women. Compared with normal-weight subjects (BMI 18.5-24.9 kg/m2), the ORs for overweight (BMI 25-29.9 kg/m2) and obese (BMI≥30 kg/m2) subjects were 1.72 [CI 1.48-2.00] and 4.17 [CI 3.41-5.10] respectively. Compared with the lowest quartile of body fat percentage, the ORs for the highest quartile were 3.83 [CI 2.85-5.15] in women and 4.05 [CI 2.67-6.15] in men. CONCLUSION Anthropometric factors, especially BMI and body fat percentage, were significantly associated with increased risk of PTC. Future studies of anthropometric factors and PTC that incorporate intermediate factors, including adiposity and hormone biomarkers, are essential to help clarify potential mechanisms of the relationship.
Annals of Hematology | 2014
Matthias Port; M. Böttcher; Felicitas Thol; Arnold Ganser; R. Schlenk; J. Wasem; A. Neumann; L. Pouryamout
Diagnosis and classification of acute myeloid leukemia (AML) are based on morphology and genetics. An increasing number of gene mutations have been found, and some are used for risk classification in AML patients with normal karyotype (cytogenetically normal (CN)-AML). In this systematic review and meta-analysis, we examined three frequent mutations in CN-AML: mutations of fms-related tyrosine kinase 3 (FLT3-ITD), mutated nucleophosmin (NPM1), and mutations of the CCAAT enhancer-binding protein alpha (CEBPA) gene. A systematic literature search of publications listed in the electronic databases (Embase, Pubmed, Healthstar, BIOSIS, ISI Web of Knowledge and Cochrane) from 2000 up to March 2012 was performed (Fig. 1). Nineteen studies were included and qualitatively analyzed. Two to four studies entered the quantitative meta-analysis incorporating 1,378 to 1,942 patients with CN-AML. Meta-analysis for overall survival (OS) and relapse-free survival (RFS) showed FLT3-ITD to predict an unfavorable prognosis, with hazard ratios (HR) of 1.86 and 1.75, respectively. In contrast, meta-analysis of the impact of NPM1 and CEBPA mutations on OS yielded an HR of 0.56 for each mutation, while analysis of impact on RFS produced HRs of 0.37 and 0.42, respectively. This systematic review and meta-analysis aimed to evaluate the prognostic value of mutations in the NPM1, CEBPA, and FLT3 genes. FLT3-ITD was associated with worse prognosis, whereas mutations in NPM1 and CEBPA genes were associated with a favorable prognosis.
Molecular Cancer Therapeutics | 2007
Christof Seidl; Matthias Port; Klaus-Peter Gilbertz; Alfred Morgenstern; Frank Bruchertseifer; Markus Schwaiger; Barbara Röper; Reingard Senekowitsch-Schmidtke; Michael Abend
Tumor cells are efficiently killed after incubation with α-emitter immunoconjugates targeting tumor-specific antigens. Therefore, application of α-emitter immunoconjugates is a promising therapeutic option for treatment of carcinomas that are characterized by dissemination of single tumor cells in the peritoneum like ovarian cancer or gastric cancer. In diffuse-type gastric cancer, 10% of patients express mutant d9-E-cadherin on the surface of tumor cells that is targeted by the monoclonal antibody d9MAb. Coupling of the α-emitter 213Bi to d9MAb provides an efficient tool to eliminate HSC45-M2 gastric cancer cells expressing d9-E-cadherin in vitro and in vivo. Elucidation of the molecular mechanisms triggered by α-emitters in tumor cells could help to improve strategies of α-emitter radioimmunotherapy. For that purpose, gene expression of 213Bi-treated tumor cells was quantified using a real time quantitative-PCR low-density array covering 380 genes in combination with analysis of cell proliferation and the mode of cell death. We could show that 213Bi-induced cell death was initiated by G2 arrest; up-regulation of tumor necrosis factor (TNF), SPHK1, STAT5A, p21, MYT1, and SSTR3; and down-regulation of SPP1, CDC25 phosphatases, and of genes involved in chromosome segregation. Together with morphologic changes, these results suggest that 213Bi activates death cascades different from apoptosis. Furthermore, 213Bi-triggered up-regulation of SSTR3 could be exploited for improvement of the therapeutic regimen. [Mol Cancer Ther 2007;6(8):2346–59]
BJUI | 2012
Christian Ruf; Michael Linbecker; Matthias Port; Armin Riecke; Hans U. Schmelz; Walter Wagner; Victor Meineke; Michael Abend
Study Type – Prognosis (cohort)
Radiation Research | 2016
Michael Abend; Christophe Badie; Roel Quintens; Ralf Kriehuber; Grainne Manning; Ellina Macaeva; M Njima; Dominik Oskamp; Sonja Strunz; S Moertl; Sven Doucha-Senf; S Dahlke; J Menzel; Matthias Port
The risk of a large-scale event leading to acute radiation exposure necessitates the development of high-throughput methods for providing rapid individual dose estimates. Our work addresses three goals, which align with the directive of the European Unions Realizing the European Network of Biodosimetry project (EU-RENB): 1. To examine the suitability of different gene expression platforms for biodosimetry purposes; 2. To perform this examination using blood samples collected from prostate cancer patients (in vivo) and from healthy donors (in vitro); and 3. To compare radiation-induced gene expression changes of the in vivo with in vitro blood samples. For the in vitro part of this study, EDTA-treated whole blood was irradiated immediately after venipuncture using single X-ray doses (1 Gy/min−1 dose rate, 100 keV). Blood samples used to generate calibration curves as well as 10 coded (blinded) samples (0–4 Gy dose range) were incubated for 24 h in vitro, lysed and shipped on wet ice. For the in vivo part of the study PAXgene tubes were used and peripheral blood (2.5 ml) was collected from prostate cancer patients before and 24 h after the first fractionated 2 Gy dose of localized radiotherapy to the pelvis [linear accelerator (LINAC), 580 MU/min, exposure 1–1.5 min]. Assays were run in each laboratory according to locally established protocols using either microarray platforms (2 laboratories) or qRT-PCR (2 laboratories). Report times on dose estimates were documented. The mean absolute difference of estimated doses relative to the true doses (Gy) were calculated. Doses were also merged into binary categories reflecting aspects of clinical/diagnostic relevance. For the in vitro part of the study, the earliest report time on dose estimates was 7 h for qRT-PCR and 35 h for microarrays. Methodological variance of gene expression measurements (CV ≤10% for technical replicates) and interindividual variance (≤twofold for all genes) were low. Dose estimates based on one gene, ferredoxin reductase (FDXR), using qRT-PCR were as precise as dose estimates based on multiple genes using microarrays, but the precision decreased at doses ≥2 Gy. Binary dose categories comprising, for example, unexposed compared with exposed samples, could be completely discriminated with most of our methods. Exposed prostate cancer blood samples (n = 4) could be completely discriminated from unexposed blood samples (n = 4, P < 0.03, two-sided Fishers exact test) without individual controls. This could be performed by introducing an in vitro-to-in vivo correction factor of FDXR, which varied among the laboratories. After that the in vitro-constructed calibration curves could be used for dose estimation of the in vivo exposed prostate cancer blood samples within an accuracy window of ±0.5 Gy in both contributing qRT-PCR laboratories. In conclusion, early and precise dose estimates can be performed, in particular at doses ≤2 Gy in vitro. Blood samples of prostate cancer patients exposed to 0.09–0.017 Gy could be completely discriminated from pre-exposure blood samples with the doses successfully estimated using adjusted in vitro-constructed calibration curves.
The Journal of Nuclear Medicine | 2016
Uta Eberlein; Harry Scherthan; Christina Bluemel; Michael Peper; Constantin Lapa; Andreas K. Buck; Matthias Port; Michael Lassmann
The aim of the study was to investigate DNA double-strand break (DSB) formation and its correlation to the absorbed dose to the blood in patients with surgically treated differentiated thyroid cancer undergoing their first radioiodine therapy for remnant ablation. Methods: Twenty patients were included in this study. At least 7 peripheral blood samples were obtained before and between 0.5 and 120 h after administration of radioiodine. From the time–activity curves of the blood and the whole body, residence times for the blood self-irradiation and the irradiation from the whole body were determined. Peripheral blood lymphocytes were isolated, ethanol-fixed, and subjected to immunofluorescence staining for colocalizing γ-H2AX/53BP1 DSB-marking foci. The average number of DSB foci per cell per patient sample was analyzed as a function of the absorbed dose to the blood and compared with an in vitro calibration curve for 131I and 177Lu established previously in our institution. Results: The average number of radiation-induced foci (RIF) per cell increased over the first 3 h after radionuclide administration and decreased thereafter. A linear fit from 0 to 2 h as a function of the absorbed dose to the blood agreed with our in vitro calibration curve. At later time points, RIF numbers diminished, along with dropping dose rates, indicating progression of DNA repair. Individual patient data were characterized by a linear dose-dependent increase and a biexponential response function describing a fast and a slow repair component. Conclusion: With the experimental results and model calculations presented in this work, a dose–response relationship is demonstrated, and an analytic function describing the time course of the in vivo damage response after internal irradiation of patients with 131I is established.
Molecular Cancer | 2014
Christian G. Ruf; Daniela Dinger; Matthias Port; Hans-Ulrich Schmelz; Walter Wagner; Cord Matthies; Bertram Müller-Myhsok; Viktor Meineke; Michael Abend
BackgroundWe aimed to better discriminate metastasized (lymphogen/occult/both combined) from non-metastasized seminoma based on post-transcriptional changes examined in the peripheral blood.MethodsTotal RNAs including small RNAs were isolated from the peripheral blood of patients suffering from metastasized testicular tumours (lymphogen, n = 5, clinical stage IIb/c; occult, n = 5, clinical stage I) and non-metastasized patients (n = 5, clinical stage I). Small RNA next generation sequencing (SOLID, Life Technologies) was employed to examine post-transcriptional changes. We searched for small RNAs showing at least 50 reads and a significant ≥ 2-fold difference using peripheral blood small RNAs of non-metastasized tumours as the reference group. Candidate small RNAs were examined in univariate logistic regression analysis and combinations of two small RNAs were further examined using support vector machines.ResultsOn average 1.3x107, 1.2x107 and 1.2x107 small RNA reads were detectable in non-metastasized, lymphogen and occult metastasized seminoma, respectively of which 73-76% remained after trimming. From these between 80-82% represented annotated reads and 7.2-7.8% (1.6-1.7x104) were annotated small RNA tags. Of them 137 small RNAs showed > 50 reads and a ≥ two-fold difference to the reference. In univariate analysis we detected 33-35 different small RNAs which significantly discriminated lymphogen/occult/combined metastasized from non-metastasized seminoma and among these different comparisons it were the same small RNAs in 44-79%. Many combinations of two of these small RNAs completely discriminated metastasized from non-metastasized seminoma irrespective of the metastasis subtype.ConclusionsMetastasized (either lymphogen or occult) seminoma can be completely discriminated from non-metastasized seminoma with a combination of two small RNAs measured in the peripheral blood.