Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias Szabolcs is active.

Publication


Featured researches published by Matthias Szabolcs.


Molecular and Cellular Biology | 2005

Role for Akt3/Protein Kinase Bγ in Attainment of Normal Brain Size

Rachael M. Easton; Han Cho; Kristin Roovers; Diana W. Shineman; Moshe Mizrahi; Virginia M.-Y. Lee; Matthias Szabolcs; Ron de Jong; Tilman Oltersdorf; Thomas Ludwig; Argiris Efstratiadis; Morris J. Birnbaum

ABSTRACT Studies of Drosophila and mammals have revealed the importance of insulin signaling through phosphatidylinositol 3-kinase and the serine/threonine kinase Akt/protein kinase B for the regulation of cell, organ, and organismal growth. In mammals, three highly conserved proteins, Akt1, Akt2, and Akt3, comprise the Akt family, of which the first two are required for normal growth and metabolism, respectively. Here we address the function of Akt3. Like Akt1, Akt3 is not required for the maintenance of normal carbohydrate metabolism but is essential for the attainment of normal organ size. However, in contrast to Akt1− / − mice, which display a proportional decrease in the sizes of all organs, Akt3 −/− mice present a selective 20% decrease in brain size. Moreover, although Akt1- and Akt3-deficient brains are reduced in size to approximately the same degree, the absence of Akt1 leads to a reduction in cell number, whereas the lack of Akt3 results in smaller and fewer cells. Finally, mammalian target of rapamycin signaling is attenuated in the brains of Akt3 −/− but not Akt1 −/− mice, suggesting that differential regulation of this pathway contributes to an isoform-specific regulation of cell growth.


Nature Genetics | 2008

Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair

Lao H. Saal; Sofia K. Gruvberger-Saal; Camilla Persson; Kristina Lövgren; Johan Staaf; Göran Jönsson; Maira M. Pires; Matthew Maurer; Karolina Holm; Susan Koujak; Shivakumar Subramaniyam; Johan Vallon-Christersson; Haökan Olsson; Tao Su; Lorenzo Memeo; Thomas Ludwig; Stephen P. Ethier; Morten Krogh; Matthias Szabolcs; Vundavalli V. Murty; Jorma Isola; Hanina Hibshoosh; Ramon Parsons; Åke Borg

Basal-like breast cancer (BBC) is a subtype of breast cancer with poor prognosis. Inherited mutations of BRCA1, a cancer susceptibility gene involved in double-strand DNA break (DSB) repair, lead to breast cancers that are nearly always of the BBC subtype; however, the precise molecular lesions and oncogenic consequences of BRCA1 dysfunction are poorly understood. Here we show that heterozygous inactivation of the tumor suppressor gene Pten leads to the formation of basal-like mammary tumors in mice, and that loss of PTEN expression is significantly associated with the BBC subtype in human sporadic and BRCA1-associated hereditary breast cancers. In addition, we identify frequent gross PTEN mutations, involving intragenic chromosome breaks, inversions, deletions and micro copy number aberrations, specifically in BRCA1-deficient tumors. These data provide an example of a specific and recurrent oncogenic consequence of BRCA1-dependent dysfunction in DNA repair and provide insight into the pathogenesis of BBC with therapeutic implications. These findings also argue that obtaining an accurate census of genes mutated in cancer will require a systematic examination for gross gene rearrangements, particularly in tumors with deficient DSB repair.


Nature Immunology | 2006

Transcriptional repressor Blimp-1 regulates T cell homeostasis and function.

Gislâine A. Martins; Luisa Cimmino; Miriam Shapiro-Shelef; Matthias Szabolcs; Alan J. Herron; Erna Magnúsdóttir; Kathryn Calame

The B lymphocyte–induced maturation protein 1 (Blimp-1) transcriptional repressor is required for terminal differentiation of B lymphocytes. Here we document a function for Blimp-1 in the T cell lineage. Blimp-1-deficient thymocytes showed decreased survival and Blimp-1-deficient mice had more peripheral effector T cells. Mice lacking Blimp-1 developed severe colitis as early as 6 weeks of age, and Blimp-1-deficient regulatory T cells were defective in blocking the development of colitis. Blimp-1 mRNA expression increased substantially in response to T cell receptor stimulation. Compared with wild-type CD4+ T cells, Blimp-1-deficient CD4+ T cells proliferated more and produced excess interleukin 2 and interferon-γ but reduced interleukin 10 after T cell receptor stimulation. These results emphasize a crucial function for Blimp-1 in controlling T cell homeostasis and activation.


Journal of Clinical Investigation | 2007

Cardiomyocyte expression of PPARγ leads to cardiac dysfunction in mice

Ni-Huiping Son; Tae-Sik Park; Haruyo Yamashita; Masayoshi Yokoyama; Lesley Ann Huggins; Kazue Okajima; Shunichi Homma; Matthias Szabolcs; Li-Shin Huang; Ira J. Goldberg

Three forms of PPARs are expressed in the heart. In animal models, PPARgamma agonist treatment improves lipotoxic cardiomyopathy; however, PPARgamma agonist treatment of humans is associated with peripheral edema and increased heart failure. To directly assess effects of increased PPARgamma on heart function, we created transgenic mice expressing PPARgamma1 in the heart via the cardiac alpha-myosin heavy chain (alpha-MHC) promoter. PPARgamma1-transgenic mice had increased cardiac expression of fatty acid oxidation genes and increased lipoprotein triglyceride (TG) uptake. Unlike in cardiac PPARalpha-transgenic mice, heart glucose transporter 4 (GLUT4) mRNA expression and glucose uptake were not decreased. PPARgamma1-transgenic mice developed a dilated cardiomyopathy associated with increased lipid and glycogen stores, distorted architecture of the mitochondrial inner matrix, and disrupted cristae. Thus, while PPARgamma agonists appear to have multiple beneficial effects, their direct actions on the myocardium have the potential to lead to deterioration in heart function.


Circulation | 1996

Apoptosis of Cardiac Myocytes During Cardiac Allograft Rejection: Relation to Induction of Nitric Oxide Synthase

Matthias Szabolcs; Robert E. Michler; Xiaochun Yang; Walif Aji; Dilip K. Roy; Eleni Athan; Robert R. Sciacca; Oktavjian P. Minanov; Paul J. Cannon

BACKGROUND Apoptosis is a distinct form of programmed cell death characterized by activation of endonucleases that cleave nuclear DNA, condensation and fragmentation of nuclear chromatin, blebbing of intact membranes, and cell shrinkage and fragmentation. The mechanisms responsible are unclear, but nitric oxide (NO) generated by inducible NO synthase (iNOS) has been demonstrated to induce apoptosis in macrophages in vitro. This study investigated whether apoptosis occurs during cardiac allograft rejection and examined the relationship of apoptosis to iNOS expression. METHODS AND RESULTS Heterotopic abdominal transplantation from Lewis to Wistar-Furth rats was used as a model of cardiac allograft rejection; Lewis-to-Lewis grafts served as controls. Apoptosis was identified by DNA ladders after electrophoresis on agarose gels and by in situ labeling of DNA fragments; cell types were determined by immunohistochemistry. The number of apoptotic cardiac myocytes increased sharply from day 3 (0.31/mm2 ventricular tissue) to day 5 (1.27/mm2) after transplantation. At day 5, allografts showed a significant increase (P < .01) in apoptotic cardiac myocytes, macrophages, and endothelial cells compared with syngeneic grafts. The expression of iNOS mRNA, protein, and enzyme activity paralleled in time and extent the apoptosis of cardiac myocytes. iNOS immunostaining of infiltrating macrophages and cardiac muscle fibers increased significantly in the allografts at days 3 to 5 and was accompanied by immunostaining of both cell types for nitrotyrosine, which is indicative of peroxynitrite formation. CONCLUSIONS Apoptosis of myocardial cells occurs during cardiac allograft rejection. Apoptosis during rejection parallels the expression of iNOS, which suggests that apoptosis may be triggered by NO and peroxynitrite.


Circulation | 1997

l-Arginine Prevents Xanthoma Development and Inhibits Atherosclerosis in LDL Receptor Knockout Mice

Walif Aji; Stefano Ravalli; Matthias Szabolcs; Xian-cheng Jiang; Robert R. Sciacca; Robert E. Michler; Paul J. Cannon

BACKGROUND The potential antiatherosclerotic actions of NO were investigated in four groups of mice (n = 10 per group) lacking functional LDL receptor genes, an animal model of familial hypercholesterolemia. Group 1 was fed a regular chow diet. Groups 2 through 4 were fed a 1.25% high-cholesterol diet. In addition, group 3 received supplemental L-arginine and group 4 received L-arginine and N omega-nitro-L-arginine (L-NA), an inhibitor of NO synthase (NOS). METHODS AND RESULTS Animals were killed at 6 months; aortas were stained with oil red O for planimetry and with antibodies against constitutive and inducible NOSs. Plasma cholesterol was markedly increased in the animals receiving the high-cholesterol diet. Xanthomas appeared in all mice fed the high-cholesterol diet alone but not in those receiving L-arginine. Aortic atherosclerosis was present in all mice on the high-cholesterol diet. The mean atherosclerotic lesion area was reduced significantly (P < .01) in the cholesterol-fed mice given L-arginine compared with those receiving the high-cholesterol diet alone. The mean atherosclerotic lesion area was significantly larger (P < .01) in cholesterol-fed mice receiving L-arginine + L-NA than in those on the high-cholesterol diet alone. Within the atherosclerotic plaques, endothelial cells immunoreacted for endothelial cell NOS; macrophages, foam cells, and smooth muscle cells immunostained strongly for inducible NOS and nitrotyrosine residues. CONCLUSIONS The data indicate that L-arginine prevents xanthoma formation and reduces atherosclerosis in LDL receptor knockout mice fed a high-cholesterol diet. The abrogation of the beneficial effects of L-arginine by L-NA suggests that the antiatherosclerotic actions of L-arginine are mediated by NOS. The data suggest that L-arginine may be beneficial in familial hypercholesterolemia.


Circulation | 2007

Xenografted Adult Human Mesenchymal Stem Cells Provide a Platform for Sustained Biological Pacemaker Function in Canine Heart

Alexei N. Plotnikov; Iryna N. Shlapakova; Matthias Szabolcs; Peter Danilo; Beverly H. Lorell; Irina A. Potapova; Zhongju Lu; Amy B. Rosen; Richard T. Mathias; Peter R. Brink; Richard B. Robinson; Ira S. Cohen; Michael R. Rosen

Background— Biological pacemaking has been performed with viral vectors, human embryonic stem cells, and adult human mesenchymal stem cells (hMSCs) as delivery systems. Only with human embryonic stem cells are data available regarding stability for >2 to 3 weeks, and here, immunosuppression has been used to facilitate survival of xenografts. The purpose of the present study was to determine whether hMSCs provide stable impulse initiation over 6 weeks without the use of immunosuppression, the “dose” of hMSCs that ensures function over this period, and the catecholamine responsiveness of hMSC-packaged pacemakers. Methods and Results— A full-length mHCN2 cDNA subcloned in a pIRES2-EGFP vector was electroporated into hMSCs. Transfection efficiency was estimated by GFP expression. IHCN2 was measured with patch clamp, and cells were administered into the left ventricular anterior wall of adult dogs in complete heart block and with backup electronic pacemakers. Studies encompassed 6 weeks. IHCN2 for all cells was 32.1±1.3 pA/pF (mean±SE) at −150 mV. Pacemaker function in intact dogs required 10 to 12 days to fully stabilize and persisted consistently through day 42 in dogs receiving ≥700 000 hMSCs (≈40% of which carried current). Rhythms were catecholamine responsive. Tissues from animals killed at 42 days manifested neither apoptosis nor humoral or cellular rejection. Conclusions— hMSCs provide a means for administering catecholamine-responsive biological pacemakers that function stably for 6 weeks and manifest no cellular or humoral rejection at that time. Cell doses >700 000 are sufficient for pacemaking when administered to left ventricular myocardium.


Science | 2011

BRCA1 Tumor Suppression Depends on BRCT Phosphoprotein Binding, But Not Its E3 Ligase Activity

Reena Shakya; Latarsha J. Reid; Colleen R. Reczek; Francesca Cole; Dieter Egli; Chyuan Sheng Lin; Dirk G. DeRooij; Steffen Hirsch; Kandasamy Ravi; James Hicks; Matthias Szabolcs; Maria Jasin; Richard Baer; Thomas Ludwig

The properties of breast cancer susceptibility protein required for tumor suppression have been explored. Germline mutations of the breast cancer 1 (BRCA1) gene are a major cause of familial breast and ovarian cancer. The BRCA1 protein displays E3 ubiquitin ligase activity, and this enzymatic function is thought to be required for tumor suppression. To test this hypothesis, we generated mice that express an enzymatically defective Brca1. We found that this mutant Brca1 prevents tumor formation to the same degree as does wild-type Brca1 in three different genetically engineered mouse (GEM) models of cancer. In contrast, a mutation that ablates phosphoprotein recognition by the BRCA C terminus (BRCT) domains of BRCA1 elicits tumors in each of the three GEM models. Thus, BRCT phosphoprotein recognition, but not the E3 ligase activity, is required for BRCA1 tumor suppression.


Transplantation | 1998

Apoptosis and increased expression of inducible nitric oxide synthase in human allograft rejection

Matthias Szabolcs; Stefano Ravalli; Oktavijan P. Minanov; Robert R. Sciacca; Robert E. Michler; Paul J. Cannon

BACKGROUND The mechanisms of myocyte death during cardiac allograft rejection are incompletely understood. In a previous study using a rat heterotopic cardiac allograft model, we showed that cardiac myocyte apoptosis, inducible nitric oxide synthase (iNOS) mRNA, protein and enzyme activity, and nitrotyrosine increased simultaneously during cardiac allograft rejection. This study was designed to investigate whether apoptosis and expression of iNOS occur in human cardiac allograft rejection. METHODS Right ventricular endomyocardial biopsies from 30 cases of allograft rejection (International Society of Heart and Lung Transplantation grade 3A/B) were compared with 12 biopsies with no rejection (International Society of Heart and Lung Transplantation grade 0). Samples were co-labeled for apoptosis and muscle actin. Serial sections were stained for iNOS, nitrotyrosine, and the leukocyte markers CD3, CD4, CD8, and CD68 to identify T-cell subpopulations and macrophages. RESULTS Biopsies with cardiac allograft rejection showed a 30-fold increase of apoptotic cells when compared with controls. Most apoptotic cardiac myocytes were found in proximity to macrophage (CD68+)-rich inflammatory infiltrates. iNOS immunoreactivity was strongest in macrophages and adjacent myocytes, which also showed high levels of nitrotyrosine, representing damage by peroxynitrite. CONCLUSIONS Apoptosis is a major form of myocyte death during human cardiac allograft rejection. Cardiac myocyte apoptosis is closely associated with expression of iNOS in macrophages and myocytes and with nitration of myocyte proteins by peroxynitrite.


Cancer Research | 2013

HMGA2 is a driver of tumor metastasis.

Asahiro Morishita; M. Raza Zaidi; Akira Mitoro; Devipriya Sankarasharma; Matthias Szabolcs; Yasunori Okada; Jeanine D'Armiento; Kiran Chada

The non-histone chromatin-binding protein HMGA2 is expressed predominantly in the mesenchyme before its differentiation, but it is also expressed in tumors of epithelial origin. Ectopic expression of HMGA2 in epithelial cells induces epithelial-mesenchymal transition (EMT), which has been implicated in the acquisition of metastatic characters in tumor cells. However, little is known about in vivo modulation of HMGA2 and its effector functions in tumor metastasis. Here, we report that HMGA2 loss of function in a mouse model of cancer reduces tumor multiplicity. HMGA2-positive cells were identified at the invasive front of human and mouse tumors. In addition, in a mouse allograft model, HMGA2 overexpression converted nonmetastatic 4TO7 breast cancer cells to metastatic cells that homed specifically to liver. Interestingly, expression of HMGA2 enhanced TGFβ signaling by activating expression of the TGFβ type II receptor, which also localized to the invasive front of tumors. Together our results argued that HMGA2 plays a critical role in EMT by activating the TGFβ signaling pathway, thereby inducing invasion and metastasis of human epithelial cancers.

Collaboration


Dive into the Matthias Szabolcs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge