Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias Thoms is active.

Publication


Featured researches published by Matthias Thoms.


Nature | 2014

Coupled GTPase and remodelling ATPase activities form a checkpoint for ribosome export

Yoshitaka Matsuo; Sander Granneman; Matthias Thoms; Rizos-Georgios Manikas; David Tollervey; Ed Hurt

Eukaryotic ribosomes are assembled by a complex pathway that extends from the nucleolus to the cytoplasm and is powered by many energy-consuming enzymes. Nuclear export is a key, irreversible step in pre-ribosome maturation, but mechanisms underlying the timely acquisition of export competence remain poorly understood. Here we show that a conserved Saccharomyces cerevisiae GTPase Nug2 (also known as Nog2, and as NGP-1, GNL2 or nucleostemin 2 in human) has a key role in the timing of export competence. Nug2 binds the inter-subunit face of maturing, nucleoplasmic pre-60S particles, and the location clashes with the position of Nmd3, a key pre-60S export adaptor. Nug2 and Nmd3 are not present on the same pre-60S particles, with Nug2 binding before Nmd3. Depletion of Nug2 causes premature Nmd3 binding to the pre-60S particles, whereas mutations in the G-domain of Nug2 block Nmd3 recruitment, resulting in severe 60S export defects. Two pre-60S remodelling factors, the Rea1 ATPase and its co-substrate Rsa4, are present on Nug2-associated particles, and both show synthetic lethal interactions with nug2 mutants. Release of Nug2 from pre-60S particles requires both its K+-dependent GTPase activity and the remodelling ATPase activity of Rea1. We conclude that Nug2 is a regulatory GTPase that monitors pre-60S maturation, with release from its placeholder site linked to recruitment of the nuclear export machinery.


Molecular Cell | 2010

The AAA-ATPase Rea1 drives removal of biogenesis factors during multiple stages of 60S ribosome assembly.

Jochen Baßler; Martina Kallas; Brigitte Pertschy; Cornelia Ulbrich; Matthias Thoms; Ed Hurt

The AAA(+)-ATPase Rea1 removes the ribosome biogenesis factor Rsa4 from pre-60S ribosomal subunits in the nucleoplasm to drive nuclear export of the subunit. To do this, Rea1 utilizes a MIDAS domain to bind a conserved motif in Rsa4. Here, we show that the Rea1 MIDAS domain binds another pre-60S factor, Ytm1, via a related motif. In vivo Rea1 contacts Ytm1 before it contacts Rsa4, and its interaction with Ytm1 coincides with the exit of early pre-60S particles from the nucleolus to the nucleoplasm. In vitro, Rea1s ATPase activity triggers removal of the conserved nucleolar Ytm1-Erb1-Nop7 subcomplex from isolated early pre-60S particle. We suggest that the Rea1 AAA(+)-ATPase functions at successive maturation steps to remove ribosomal factors at critical transition points, first driving the exit of early pre-60S particles from the nucleolus and then driving late pre-60S particles from the nucleus.


Nature Communications | 2014

60S ribosome biogenesis requires rotation of the 5S ribonucleoprotein particle.

Christoph Leidig; Matthias Thoms; Iris Holdermann; Bettina Bradatsch; Otto Berninghausen; Gert Bange; Irmgard Sinning; Ed Hurt; Roland Beckmann

During eukaryotic ribosome biogenesis, nascent ribosomal RNA (rRNA) forms pre-ribosomal particles containing ribosomal proteins and assembly factors. Subsequently, these immature rRNAs are processed and remodelled. Little is known about the premature assembly states of rRNAs and their structural rearrangement during ribosome biogenesis. Using cryo-EM we characterize a pre-60S particle, where the 5S rRNA and its associated ribosomal proteins L18 and L5 (5S ribonucleoprotein (RNP)) are rotated by almost 180° when compared with the mature subunit. Consequently, neighbouring 25S rRNA helices that protrude from the base of the central protuberance are deformed. This altered topology is stabilized by nearby assembly factors (Rsa4 and Nog1), which were identified by fitting their three-dimensional structures into the cryo-EM density. We suggest that the 5S RNP performs a semicircular movement during 60S biogenesis to adopt its final position, fulfilling a chaperone-like function in guiding the flanking 25S rRNA helices of the central protuberance to their final topology.


Structure | 2013

Protein Interfaces of the Conserved Nup84 Complex from Chaetomium thermophilum Shown by Crosslinking Mass Spectrometry and Electron Microscopy

Karsten Thierbach; Alexander von Appen; Matthias Thoms; Martin Beck; Dirk Flemming; Ed Hurt

A key building block of the nuclear pore complex (NPC) is the Nup84 subcomplex that has been structurally analyzed predominantly in the yeast system. To expand this analysis and gain insight into the evolutionary conservation of its structure, we reconstituted an octameric Nup84 complex using the subunits from a thermophile, Chaetomium thermophilum (ct). This assembly carries Nup37 and Elys, which are characteristic subunits of the orthologous human Nup107-Nup160 complex but absent from the yeast Saccharomyces cerevisiae. We found that Elys binds cooperatively to the complex requiring both Nup37 and Nup120. Unexpectedly, the reconstituted ctNup84 complex formed a striking dimer structure with an unpredicted side-to-side arrangement of two molecules. Finally, crosslinking mass spectrometry allowed the mapping of key protein interfaces within the Y-shaped complex. Thus, the thermophilic Nup84 complex can serve as a structural model for higher eukaryotic Nup107-Nup160 assemblies to gain insight into its possible configuration within the NPC scaffold.


Journal of Cell Biology | 2014

A network of assembly factors is involved in remodeling rRNA elements during preribosome maturation

Jochen Baßler; Helge Paternoga; Iris Holdermann; Matthias Thoms; Sander Granneman; Clara Barrio-Garcia; Afua Nyarko; Woonghee Lee; Gunter Stier; Sarah A. Clark; Daniel Schraivogel; Martina Kallas; Roland Beckmann; David Tollervey; Elisar Barbar; Irmi Sinning; Ed Hurt

The assembly factor heterodimer Rsa4–Nsa2 binds to the preribosome and transmits remodeling energy from the force-generating ATPase Rea1 to facilitate relocation of ribosomal RNA elements during ribosome maturation.


Nature Communications | 2015

Co-translational capturing of nascent ribosomal proteins by their dedicated chaperones

Patrick Pausch; Ujjwala Singh; Yasar Luqman Ahmed; Benjamin Pillet; Guillaume Murat; Florian Altegoer; Gunter Stier; Matthias Thoms; Ed Hurt; Irmgard Sinning; Gert Bange; Dieter Kressler

Exponentially growing yeast cells produce every minute >160,000 ribosomal proteins. Owing to their difficult physicochemical properties, the synthesis of assembly-competent ribosomal proteins represents a major challenge. Recent evidence highlights that dedicated chaperone proteins recognize the N-terminal regions of ribosomal proteins and promote their soluble expression and delivery to the assembly site. Here we explore the intuitive possibility that ribosomal proteins are captured by dedicated chaperones in a co-translational manner. Affinity purification of four chaperones (Rrb1, Syo1, Sqt1 and Yar1) selectively enriched the mRNAs encoding their specific ribosomal protein clients (Rpl3, Rpl5, Rpl10 and Rps3). X-ray crystallography reveals how the N-terminal, rRNA-binding residues of Rpl10 are shielded by Sqt1s WD-repeat β-propeller, providing mechanistic insight into the incorporation of Rpl10 into pre-60S subunits. Co-translational capturing of nascent ribosomal proteins by dedicated chaperones constitutes an elegant mechanism to prevent unspecific interactions and aggregation of ribosomal proteins on their road to incorporation.


Protein Science | 2017

Interaction network of the ribosome assembly machinery from a eukaryotic thermophile.

Jochen Baßler; Yasar Luqman Ahmed; Martina Kallas; Markus Kornprobst; Fabiola R. Calviño; Marén Gnädig; Matthias Thoms; Gunter Stier; Sherif Ismail; Satyavati Kharde; Nestor Castillo; Sabine Griesel; Sonja Bastuck; Bettina Bradatsch; Emma Thomson; Dirk Flemming; Irmgard Sinning; Ed Hurt

Ribosome biogenesis in eukaryotic cells is a highly dynamic and complex process innately linked to cell proliferation. The assembly of ribosomes is driven by a myriad of biogenesis factors that shape pre‐ribosomal particles by processing and folding the ribosomal RNA and incorporating ribosomal proteins. Biochemical approaches allowed the isolation and characterization of pre‐ribosomal particles from Saccharomyces cerevisiae, which lead to a spatiotemporal map of biogenesis intermediates along the path from the nucleolus to the cytoplasm. Here, we cloned almost the entire set (∼180) of ribosome biogenesis factors from the thermophilic fungus Chaetomium thermophilum in order to perform an in‐depth analysis of their protein–protein interaction network as well as exploring the suitability of these thermostable proteins for structural studies. First, we performed a systematic screen, testing about 80 factors for crystallization and structure determination. Next, we performed a yeast 2‐hybrid analysis and tested about 32,000 binary combinations, which identified more than 1000 protein–protein contacts between the thermophilic ribosome assembly factors. To exemplary verify several of these interactions, we performed biochemical reconstitution with the focus on the interaction network between 90S pre‐ribosome factors forming the ctUTP‐A and ctUTP‐B modules, and the Brix‐domain containing assembly factors of the pre‐60S subunit. Our work provides a rich resource for biochemical reconstitution and structural analyses of the conserved ribosome assembly machinery from a eukaryotic thermophile.


Cell | 2017

Visualizing the Assembly Pathway of Nucleolar Pre-60S Ribosomes

Lukas Kater; Matthias Thoms; Clara Barrio-Garcia; Jingdong Cheng; Sherif Ismail; Yasar Luqman Ahmed; Gert Bange; Dieter Kressler; Otto Berninghausen; Irmgard Sinning; Ed Hurt; Roland Beckmann

Summary Eukaryotic 60S ribosomal subunits are comprised of three rRNAs and ∼50 ribosomal proteins. The initial steps of their formation take place in the nucleolus, but, owing to a lack of structural information, this process is poorly understood. Using cryo-EM, we solved structures of early 60S biogenesis intermediates at 3.3 Å to 4.5 Å resolution, thereby providing insights into their sequential folding and assembly pathway. Besides revealing distinct immature rRNA conformations, we map 25 assembly factors in six different assembly states. Notably, the Nsa1-Rrp1-Rpf1-Mak16 module stabilizes the solvent side of the 60S subunit, and the Erb1-Ytm1-Nop7 complex organizes and connects through Erb1’s meandering N-terminal extension, eight assembly factors, three ribosomal proteins, and three 25S rRNA domains. Our structural snapshots reveal the order of integration and compaction of the six major 60S domains within early nucleolar 60S particles developing stepwise from the solvent side around the exit tunnel to the central protuberance.


Nature Structural & Molecular Biology | 2016

Ribosome-stalk biogenesis is coupled with recruitment of nuclear-export factor to the nascent 60S subunit

Anshuk Sarkar; Markus Pech; Matthias Thoms; Roland Beckmann; Ed Hurt

Nuclear export of preribosomal subunits is a key step during eukaryotic ribosome formation. To efficiently pass through the FG-repeat meshwork of the nuclear pore complex, the large pre-60S subunit requires several export factors. Here we describe the mechanism of recruitment of the Saccharomyces cerevisiae RNA-export receptor Mex67–Mtr2 to the pre-60S subunit at the proper time. Mex67–Mtr2 binds at the premature ribosomal-stalk region, which later during translation serves as a binding platform for translational GTPases on the mature ribosome. The assembly factor Mrt4, a structural homolog of cytoplasmic-stalk protein P0, masks this site, thus preventing untimely recruitment of Mex67–Mtr2 to nuclear pre-60S particles. Subsequently, Yvh1 triggers Mrt4 release in the nucleus, thereby creating a narrow time window for Mex67–Mtr2 association at this site and facilitating nuclear export of the large subunit. Thus, a spatiotemporal mark on the ribosomal stalk controls the recruitment of an RNA-export receptor to the nascent 60S subunit.


Nucleic Acids Research | 2016

Concerted removal of the Erb1–Ytm1 complex in ribosome biogenesis relies on an elaborate interface

Matthias Thoms; Yasar Luqman Ahmed; Karthik Maddi; Ed Hurt; Irmgard Sinning

The complicated process of eukaryotic ribosome biogenesis involves about 200 assembly factors that transiently associate with the nascent pre-ribosome in a spatiotemporally ordered way. During the early steps of 60S subunit formation, several proteins, collectively called A3 cluster factors, participate in the removal of the internal transcribed spacer 1 (ITS1) from 27SA3 pre-rRNA. Among these factors is the conserved hetero-trimeric Nop7–Erb1–Ytm1 complex (or human Pes1–Bop1–Wdr12), which is removed from the evolving pre-60S particle by the AAA ATPase Rea1 to allow progression in the pathway. Here, we clarify how Ytm1 and Erb1 interact, which has implications for the release mechanism of both factors from the pre-ribosome. Biochemical studies show that Ytm1 and Erb1 bind each other via their ß-propeller domains. The crystal structure of the Erb1–Ytm1 heterodimer determined at 2.67Å resolution reveals an extended interaction surface between the propellers in a rarely observed binding mode. Structure-based mutations in the interface that impair the Erb1–Ytm1 interaction do not support growth, with specific defects in 60S subunit synthesis. Under these mutant conditions, it becomes clear that an intact Erb1–Ytm1 complex is required for 60S maturation and that loss of this stable interaction prevents ribosome production.

Collaboration


Dive into the Matthias Thoms's collaboration.

Top Co-Authors

Avatar

Ed Hurt

Heidelberg University

View shared research outputs
Top Co-Authors

Avatar

Roland Beckmann

Center for Integrated Protein Science Munich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Otto Berninghausen

Center for Integrated Protein Science Munich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dieter Kressler

Swiss Institute of Bioinformatics

View shared research outputs
Researchain Logo
Decentralizing Knowledge