Matthias Wüst
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthias Wüst.
Phytochemistry | 2002
Fang Luan; Matthias Wüst
In vivo feeding experiments with [5,5-(2)H(2)]mevalonic acid lactone (MVL) and [5,5-(2)H(2)]-1-deoxy-D-xylulose (DOX) indicate that the novel mevalonate-independent 1-deoxy- D-xylulose 5-phosphate/2C-methyl- D-erythritol 4-phosphate (DOXP/MEP) pathway is the dominant metabolic route for monoterpene biosynthesis in grape berry exocarp and mesocarp and in grape leaves. The highly uneven distribution of the monoterpene alcohols (3S)-linalool and geraniol between leaves, berry exocarp and berry mesocarp can be attributed to a compartmentation of monoterpene metabolism. In grape berries incorporation of [5,5-(2)H(2)]-DOX into geraniol is mainly restricted to the exocarp, whereas (3S)-linalool biosynthesis can be detected in exocarp as well as in mesocarp tissue. The results demonstrate that grape berries exhibit an autonomic monoterpene biosynthesis via the novel DOXP/MEP route throughout the ripening process.
Phytochemistry | 2002
Panagiotis Steliopoulos; Matthias Wüst; Klaus-Peter Adam; Armin Mosandl
The biogenetic origin of the isoprenoid building blocks of the sesquiterpene germacrene D was studied in Solidago canadensis. Feeding experiments were carried out with 1-[5,5-D(2)]deoxy-D-xylulose-5-phosphate (D(2)-DOXP), [5-13C]mevalonolactone (13C-MVL) and [1-13C]-D-glucose. The hydrodistillate of a cut shoot fed with D(2)-DOXP was investigated by enantio-MDGC-MS and the volatile fraction of a shoot supplied with 13C-MVL was examined by GC-C-IRMS. The incorporation of [1-13C]-D-glucose was analyzed by quantitative 13C NMR spectroscopy after isolation of germacrene D from the essential oil. Our labeling studies revealed that the biosynthesis of the C-15 skeleton of sesquiterpene germacrene D in Solidago canadensis proceeds predominantly via the methylerythritol phosphate pathway.
Analytical Chemistry | 2011
Jochen Fischer; Paul W. Elsinghorst; Mark Bücking; Ernst Tholen; Brigitte Petersen; Matthias Wüst
The steroidal pig pheromones androstenone (5α-androst-16-en-3-one), 3α-androstenol (5α-androst-16-en-3α-ol), and 3β-androstenol (5α-androst-16-en-3β-ol) as well as the heterocyclic aromatic amines skatole and indole, originating from microbial degradation of tryptophan in the intestine of pigs, are frequently recognized as the major compounds responsible for boar taint. A new procedure, applying stable isotope dilution analysis (SIDA) and headspace solid-phase microextraction-gas chromatography/mass spectrometry (HS-SPME-GC/MS) for the simultaneous quantitation of these boar taint compounds in pig fat was developed and validated. The deuterated compounds androstenone-d(3), 3β-androstenol-d(3), skatole-d(3), and indole-d(6) were synthesized and successfully employed as internal standards for SIDA. The new procedure is characterized by a fast, simple, and economic sample preparation: methanolic extraction of the melted fat followed by a freezing and an evaporation step allows for extraction and enrichment of all five analytes. Additional time-consuming cleanup steps were not necessary, as HS-SPME sampling overcomes fat-associated injector and column contamination. The method has been validated by determining intra- and interday precision and accuracy as well as the limit of detection (LOD) and limit of quantitation (LOQ). Additionally, a cross-validation for androstenone, skatole, and indole was carried out comparing the results of 25 back fat samples obtained simultaneously by the new SIDA-HS-SPME-GC/MS procedure with those obtained in separate GC/MS and high-performance liquid chromatography fluorescence detection (HPLC-FD) measurements. The cross-validation revealed comparable results and confirms the feasibility of the new SIDA-HS-SPME-GC/MS procedure.
Phytochemistry | 2013
Bianca May; B. Markus Lange; Matthias Wüst
The participation of the mevalonic acid (MVA) and 1-deoxy-d-xylulose 5-phosphate/2-C-methyl-d-erythritol-4-phosphate (DOXP/MEP) pathways in sesquiterpene biosynthesis of grape berries was investigated. There is an increasing interest in this class of terpenoids, since the oxygenated sesquiterpene rotundone was identified as the peppery aroma impact compound in Australian Shiraz wines. To investigate precursor supply pathway utilization, in vivo feeding experiments were performed with the deuterium labeled, pathway specific, precursors [5,5-(2)H2]-1-deoxy-d-xylulose and [5,5-(2)H2]-mevalonic acid lactone. Head Space-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) analysis of the generated volatile metabolites demonstrated that de novo sesquiterpene biosynthesis is mainly located in the grape berry exocarp (skin), with no detectable activity in the mesocarp (flesh) of the Lemberger variety. Interestingly, precursors from both the (primarily) cytosolic MVA and plastidial DOXP/MEP pathways were incorporated into grape sesquiterpenes in the varieties Lemberger, Gewürztraminer and Syrah. Our labeling data provide evidence for a homogenous, cytosolic pool of precursors for sesquiterpene biosynthesis, indicating that a transport of precursors occurs mostly from plastids to the cytosol. The labeling patterns of the sesquiterpene germacrene D were in agreement with a cyclization mechanism analogous to that of a previously cloned enantioselective (R)-germacrene D synthase from Solidago canadensis. This observation was subsequently confirmed by enantioselective GC-MS analysis demonstrating the exclusive presence of (R)-germacrene D, and not the (S)-enantiomer, in grape berries.
Journal of Agricultural and Food Chemistry | 2008
Marco-Antonio Mirata; Matthias Wüst; Armin Mosandl; Jens Schrader
The biotransformation of (+/-)-linalool was investigated by screening 19 fungi. Product accumulation was enhanced by substrate feeding and, for the first time, lilac aldehydes and lilac alcohols were identified as fungal biotransformation byproduct using SPME-GC-MS headspace analysis. Aspergillus niger DSM 821, Botrytis cinerea 5901/02, and B. cinerea 02/FBII/2.1 produced different isomers of lilac aldehyde and lilac alcohol from linalool via 8-hydroxylinalool as postulated intermediate. Linalool oxides and 8-hydroxylinalool were the major products of fungal (+/-)-linalool biotransformations. Furanoid trans-(2 R,5 R)- and cis-(2 S,5 R)-linalool oxide as well as pyranoid trans-(2 R,5 S)- and cis-(2 S, 5 S)-linalool oxide were identified as the main stereoisomers with (3 S,6 S)-6,7-epoxylinalool and (3 R,6 S)-6,7-epoxylinalool as postulated key intermediates of fungal (+/-)-linalool oxyfunctionalization, respectively. With a conversion yield close to 100% and a productivity of 120 mg/L.day linalool oxides, Corynespora cassiicola DSM 62485 was identified as a novel highly stereoselective linalool transforming biocatalyst showing the highest productivity reported so far.
Plant Journal | 2008
Jeffrey A. Cruz; Caroline Emery; Matthias Wüst; David M. Kramer; B. Markus Lange
SUMMARY A sensitive and robust mixed-mode high performance liquid chromatography-tandem mass spectrometry method was developed for the qualitative and quantitative determination of sugar phosphates, which are notoriously difficult to separate using reversed-phase materials. Sugar phosphates were separated on a Primesep SB column by gradient elution using aqueous ammonium formate and acetonitrile as mobile phases. Target analytes were identified by their precursor/product ions and retention times. Quantitative analysis was performed in negative ionization/multiple reaction monitoring mode with five different time segments. The method was validated by spiking authentic sugar phosphate standards into complex plant tissue extracts. Standard curves of neat authentic standards and spiked extracts were generated for concentrations in the low picomole to nanomole range, with correlation coefficients of R(2) > 0.991, and the degree of ion suppression in the presence of a plant matrix was calculated for each analyte. Analyte recoveries, which were determined by including known quantities of authentic standards in the sugar phosphate extraction protocol, ranged from 40.0% to 57.4%. The analytical reproducibility was assessed by determining the coefficient of variance based on repeated extractions/measurements (<20%). The utility of our method is demonstrated with two types of applications: profiling of Calvin cycle intermediates in (i) dark-adapted and light-treated tobacco leaves, and in (ii) antisense plants expressing reduced levels of the Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase or ribulose-1,5-bisphosphate carboxylase/oxygenase (comparison with wild-type controls). The broader applicability of our method is illustrated by profiling sugar phosphates extracted from the leaves of five taxonomically diverse plants.
Journal of Agricultural and Food Chemistry | 2008
Stephan Koslitz; Lauren Renaud; Marcel Kohler; Matthias Wüst
The potent aroma compound rose oxide was quantified in several white wines by a headspace solid-phase microextration stable isotope dilution assay (HS-SPME-SIDA) and the enantiomeric ratios of the cis diastereomers were determined by enantioselective capillary GC. The most odor-active stereoisomer (23)-cis-rose oxide was detectable in all investigated white wines ranging from 0.2 to 12 microg/L. However, its contribution to the overall aroma in some white wine varieties can be neglected as indicated by a low odor activity value (OAV). The highest concentrations were found in Gewürztraminer wines, confirming the importance of rose oxide as a varietal aroma compound in this variety. Surprisingly, the enantiomeric ratio of cis-rose oxide in all investigated wines was substantially lower than in nonfermented musts and in some wines almost racemic cis-rose oxide was detected. Fermentation studies with a model must that contained deuterated water revealed that yeast is capable of reducing the precursor 3,7-dimethyl octa-2,5-dien-1,7-diol (geranyl diol I) yielding 3,7-dimethyl-5-octen-1,7-diol (citronellyl diol I) that gives rise to cis- and trans-rose oxide after acid catalyzed cylization. The deuterium labeling pattern of the resulting rose oxide stereoisomers and a clearly detectable kinetic isotope effect indicate that at least two different reductive pathways in yeast exist that yield cis-rose oxide with different enantiomeric ratios altering the genuine enantiomeric ratio in grape musts. The presence of (+)-cis-rose oxides in wines can therefore be attributed to the reductive yeast metabolism during fermentation. This observation corroborates recent findings that the modification of terpene derived varietal aroma is an integral part of yeast metabolism and not only a simple hydrolytical process.
Journal of Agricultural and Food Chemistry | 2015
Wilfried Schwab; Matthias Wüst
The present review integrates current knowledge on mono- and sesquiterpenes in grapes with a special focus on biochemical and physiological aspects. Recent research has impressively shown the prominence of terpenoid metabolism in grapevine (Vitis sp). The 69 putatively functional mono- and sesquiterpene synthases that were identified by the analysis of the updated 12-fold sequencing and assembly of the grapevine genome deliver the scaffolds for structural diversity and display a surprising expansion of the terpene synthase (TPS) gene family in grapevine when compared to other plants like Arabidopsis thaliana (32 TPS). While monoterpenes occur as highly functionalized compounds and are stored as their corresponding glycoconjugates in berry tissues, sesquiterpenes are mainly present as unsaturated hydrocarbons and accumulate in the epicuticular wax layer of intact berries. Interestingly, both groups of terpenes appear to be involved as volatile organic compounds in plant defense and their biosynthesis is enhanced via the jasmonic acid signaling pathway. These novel aspects will help to understand how environmental cues affect the genes and enzymes of various metabolic pathways of relevant wine aroma compounds with numerous links to enology and wine flavor chemistry.
Phytochemistry | 2013
Daniel J. Cuthbertson; Sean R. Johnson; Jasenka Piljac-Žegarac; Julia Kappel; Sarah Schäfer; Matthias Wüst; Raymond E.B. Ketchum; Rodney Croteau; Joaquim V. Marques; Laurence B. Davin; Norman G. Lewis; Megan Rolf; Toni M. Kutchan; D. Doel Soejarto; B. Markus Lange
We report the development and testing of an accurate mass-time (AMT) tag approach for the LC/MS-based identification of plant natural products (PNPs) in complex extracts. An AMT tag library was developed for approximately 500 PNPs with diverse chemical structures, detected in electrospray and atmospheric pressure chemical ionization modes (both positive and negative polarities). In addition, to enable peak annotations with high confidence, MS/MS spectra were acquired with three different fragmentation energies. The LC/MS and MS/MS data sets were integrated into online spectral search tools and repositories (Spektraris and MassBank), thus allowing users to interrogate their own data sets for the potential presence of PNPs. The utility of the AMT tag library approach is demonstrated by the detection and annotation of active principles in 27 different medicinal plant species with diverse chemical constituents.
Journal of Agricultural and Food Chemistry | 2014
Ursula Wölwer-Rieck; Bianca May; Christa Lankes; Matthias Wüst
The biosynthesis of the diterpenoid steviol glycosides rebaudioside A and stevioside in nonrooted cuttings of Stevia rebaudiana was investigated by feeding experiments using the labeled key precursors [5,5-(2)H2]-mevalonic acid lactone (d2-MVL) and [5,5-(2)H2]-1-deoxy-d-xylulose (d2-DOX). Labeled glycosides were extracted from the leaves and stems and were directly analyzed by LC-(-ESI)-MS/MS and by GC-MS after hydrolysis and derivatization of the resulting isosteviol to the corresponding TMS-ester. Additionally, the incorporation of the proffered d2-MVL and d2-DOX into volatile monoterpenes, sesquiterpenes, and diterpenes in glandular trichomes on leaves and stems was investigated by headspace-solid phase microextraction-GC-MS (HS-SPME-GC-MS). Incorporation of the labeled precursors indicated that diterpenes in leaves and monoterpenes and diterpenes in glandular trichomes are predominately biosynthesized via the methylerythritol phosphate (MEP) pathway, whereas both the MEP and mevalonate (MVA) pathways contribute to the biosynthesis of sesquiterpenes at equal rates in glandular trichomes. These findings give evidence for a transport of MEP pathway derived farnesyl diphosphate precursors from plastids to the cytosol. Contrarily, the transport of MVA pathway derived geranyl diphosphate and geranylgeranyl diphosphate precursors from the cytosol to the plastid is limited.