Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias Zeisberger is active.

Publication


Featured researches published by Matthias Zeisberger.


ACS Nano | 2015

Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber

Sanli Faez; Yoav Lahini; Stefan Weidlich; Rees F. Garmann; Katrin Wondraczek; Matthias Zeisberger; Markus A. Schmidt; Michel Orrit; Vinothan N. Manoharan

High-speed tracking of single particles is a gateway to understanding physical, chemical, and biological processes at the nanoscale. It is also a major experimental challenge, particularly for small, nanometer-scale particles. Although methods such as confocal or fluorescence microscopy offer both high spatial resolution and high signal-to-background ratios, the fluorescence emission lifetime limits the measurement speed, while photobleaching and thermal diffusion limit the duration of measurements. Here we present a tracking method based on elastic light scattering that enables long-duration measurements of nanoparticle dynamics at rates of thousands of frames per second. We contain the particles within a single-mode silica fiber having a subwavelength, nanofluidic channel and illuminate them using the fibers strongly confined optical mode. The diffusing particles in this cylindrical geometry are continuously illuminated inside the collection focal plane. We show that the method can track unlabeled dielectric particles as small as 20 nm as well as individual cowpea chlorotic mottle virus (CCMV) virions-26 nm in size and 4.6 megadaltons in mass-at rates of over 3 kHz for durations of tens of seconds. Our setup is easily incorporated into common optical microscopes and extends their detection range to nanometer-scale particles and macromolecules. The ease-of-use and performance of this technique support its potential for widespread applications in medical diagnostics and micro total analysis systems.


ChemPhysChem | 2010

Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays.

Dana Cialla; J. Petschulat; Uwe Hübner; Henrik Schneidewind; Matthias Zeisberger; Roland Mattheis; Thomas Pertsch; Michael Schmitt; Robert Möller; Jürgen Popp

In general, the electromagnetic mechanism is understood as the strongest contribution to the overall surface-enhanced Raman spectroscopy (SERS) enhancement. Due to the excitation of surface plasmons, a strong electromagnetic field is induced at the interfaces of a metallic nanoparticle leading to a drastic enhancement of the Raman scattering cross-section. Furthermore, the Raman scattered light expierences an emission enhancement due to the plasmon resonances of the nanoantennas. Herein, this second part of the electromagnetic enhancement phenomenon is investigated for different Raman bands of crystal violet by utilizing the anisotropic plasmonic character of gold nanorhomb SERS arrays. We aim at evaluating the effects of localized and propagating surface plasmon polariton modes as well as their combination on the scattered SERS intensity. From that point of view, design and fabrication strategies towards the fabrication of SERS arrays for excitation wavelengths in the visible and near-infrared (NIR) spectral region can be given, also using a double-resonant electromagnetic enhancement.


Beilstein Journal of Nanotechnology | 2011

Towards multiple readout application of plasmonic arrays

Dana Cialla; Karina Weber; René Böhme; Uwe Hübner; Henrik Schneidewind; Matthias Zeisberger; Roland Mattheis; Robert Möller; Jürgen Popp

Summary In order to combine the advantages of fluorescence and surface-enhanced Raman spectroscopy (SERS) on the same chip platform, a nanostructured gold surface with a unique design, allowing both the sensitive detection of fluorescence light together with the specific Raman fingerprint of the fluorescent molecules, was established. This task requires the fabrication of plasmonic arrays that permit the binding of molecules of interest at different distances from the metallic surface. The most efficient SERS enhancement is achieved for molecules directly adsorbed on the metallic surface due to the strong field enhancement, but where, however, the fluorescence is quenched most efficiently. Furthermore, the fluorescence can be enhanced efficiently by careful adjustment of the optical behavior of the plasmonic arrays. In this article, the simultaneous application of SERS and fluorescence, through the use of various gold nanostructured arrays, is demonstrated by the realization of a DNA detection scheme. The results shown open the way to more flexible use of plasmonic arrays in bioanalytics.


Optics Express | 2016

Analytic model for the complex effective index dispersion of metamaterial-cladding large-area hollow core fibers

Matthias Zeisberger; Alessandro Tuniz; Markus A. Schmidt

We present a mathematical model that allows interpreting the dispersion and attenuation of modes in hollow-core fibers (HCFs) on the basis of single interface reflection, giving rise to analytic and semi-analytic expressions for the complex effective indices in the case where the core diameter is large and the guiding is based on the reflection by a thin layer. Our model includes two core-size independent reflection parameters and shows the universal inverse-cubed core diameter dependence of the modal attenuation of HCFs. It substantially reduces simulation complexity and enables large scale parameter sweeps, which we demonstrate on the example of a HCF with a highly anisotropic metallic nanowire cladding, resembling an indefinite metamaterial at high metal filling fractions. We reveal design rules that allow engineering modal discrimination and show that metamaterial HCFs can principally have low losses at mid-IR wavelengths (< 1 dB/m at 10.6 µm). Our model can be applied to a great variety of HCFs with large core diameters and can be used for advanced HCF design and performance optimization, in particular with regard to dispersion engineering and modal discrimination.


Scientific Reports | 2017

Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers

Matthias Zeisberger; Markus A. Schmidt

Due to their promising applications, hollow-core fibers, in particular, their anti-resonant versions, have recently attracted the attention of the photonics community. Here, we introduce a model that approximates, using the reflection of a wave on a single planar film, modal guidance in tube-type anti-resonant waveguides whose core diameters are large compared to the wavelength. The model yields analytic expressions for the real and imaginary parts of the complex effective index of the leaky modes supported, and is valid in all practically relevant situations, excellently matching all the important dispersion and loss parameters. Essential principles such as the fourth power dependence of the modal loss on the core radius at all wavelengths and the geometry-independent transition refractive index, below which modal discrimination favors the fundamental mode are discussed. As application examples, we use our model for understanding higher-order mode suppression in revolver-type fibers and for uncovering the tuning capabilities associated with nonlinear pulse propagation.


Optics Express | 2016

Tailored loss discrimination in indefinite metamaterial-clad hollow-core fibers.

Alessandro Tuniz; Matthias Zeisberger; Markus A. Schmidt

We analyze the modal attenuation properties of silica hollow-core fibers with a gold-wire based indefinite metamaterial cladding at 10.6 µm. We find that by varying the metamaterial feature sizes and core diameter, the loss discrimination can be tailored such that either the HE11, TE01 or TM01 mode has the lowest loss, which is particularly difficult to achieve for the radially polarized mode in commonly used hollow-core fibers. Furthermore, it is possible to tailor the HE11 and TM01 modes in the metamaterial-clad waveguide so that they possess attenuations lower than in hollow tubes composed of the individual constituent materials. We show that S-parameter retrieval techniques in combination with an anisotropic dispersion equation can be used to predict the loss discrimination properties of such fibers. These results pave the way for the design of metamaterial hollow-core fibers with novel guidance properties, in particular for applications demanding cylindrically polarized modes.


APL Photonics | 2016

Gold-reinforced silver nanoprisms on optical fiber tapers—A new base for high precision sensing

Torsten Wieduwilt; Matthias Zeisberger; Matthias Thiele; B. Doherty; M. Chemnitz; Andrea Csáki; W. Fritzsche; Markus A. Schmidt

Due to their unique optical properties, metallic nanoparticles offer a great potential for important applications such as disease diagnostics, demanding highly integrated device solutions with large refractive index sensitivity. Here we introduce a new type of monolithic localized surface plasmon resonance (LSPR) waveguide sensor based on the combination of an adiabatic optical fiber taper and a high-density ensemble of immobilized gold-reinforced silver nanoprisms, showing sensitivities up to 900 nm/RIU. This result represents the highest value reported so far for a fiber optic sensor using the LSPR effect and exceeds the corresponding value of the bulk solution by a factor of two. The plasmonic resonance is efficiently excited via the evanescent field of the propagating taper mode, leading to pronounced transmission dips (−20 dB). The particle density is so high (approx. 210 particle/μm2) that neighboring particles are able to interact, boosting the sensitivity, as confirmed by qualitative infinite elem...


Nanotechnology | 2014

The effect of silver thickness on the enhancement of polymer based SERS substrates

Henrik Schneidewind; Karina Weber; Matthias Zeisberger; Uwe Hübner; Andrea Dellith; Dana Cialla-May; Roland Mattheis; J. Popp

We investigated silver-covered polymer based nanogratings as substrates for surface-enhanced Raman spectroscopy (SERS), in particular with respect to the thickness of the plasmonically active silver film. In order to obtain accurate geometrical input data for the simulation process, we inspected cross sections of the gratings prepared by breaking at cryogenic temperature. We noticed a strong dependence of the simulation results on geometrical variations of the structures. Measurements revealed that an increasing silver film thickness on top of the nanogratings leads to a blue shift of the plasmonic resonance, as predicted by numerical simulations, as well as to an increased field enhancement for an excitation at 488 nm. We found a clear deviation of the experimental data compared to the simulated results for very thin silver films due to an island-like growth at a silver thickness below 20 nm. In order to investigate the SERS activity. we carried out measurements with crystal violet as a model analyte at an excitation wavelength of 488 nm. The SERS enhancement increases up to a silver thickness of about 30 nm, whereas it remains nearly constant for thicker silver films.


Biomedical Optics Express | 2017

Nanoparticle functionalised small-core suspended-core fibre – a novel platform for efficient sensing

Brenda Doherty; Andrea Csáki; Matthias Thiele; Matthias Zeisberger; Anka Schwuchow; Jens Kobelke; Wolfgang Fritzsche; Markus A. Schmidt

Detecting small quantities of specific target molecules is of major importance within bioanalytics for efficient disease diagnostics. One promising sensing approach relies on combining plasmonically-active waveguides with microfluidics yielding an easy-to-use sensing platform. Here we introduce suspended-core fibres containing immobilised plasmonic nanoparticles surrounding the guiding core as a concept for an entirely integrated optofluidic platform for efficient refractive index sensing. Due to the extremely small optical core and the large adjacent microfluidic channels, over two orders of magnitude of nanoparticle coverage densities have been accessed with millimetre-long sample lengths showing refractive index sensitivities of 170 nm/RIU for aqueous analytes where the fibre interior is functionalised by gold nanospheres. Our concept represents a fully integrated optofluidic sensing system demanding small sample volumes and allowing for real-time analyte monitoring, both of which are highly relevant within invasive bioanalytics, particularly within molecular disease diagnostics and environmental science.


Optics Letters | 2016

Enhanced sensitivity in single-mode silicon nitride stadium resonators at visible wavelengths.

Mario Chemnitz; Gabriele Schmidl; Anka Schwuchow; Matthias Zeisberger; Uwe Hübner; Karina Weber; Markus A. Schmidt

The marker-free and noninvasive detection of small traces of analytes in aqueous solution using integrated optical resonators is an emerging technique within bioanalytics. Here, we present a single-mode silicon-nitride stadium resonator operating at the red edge of the visible spectrum, showing sensitivities larger than 200 nm/RIU and transmission dips with extinction ratios of more than 15 dB. We introduce a mathematical model that allows analyzing of the resonator sensitivity using the properties of the guided mode only. Large geometric parameter scans using finite element simulations show that optimal sensing conditions are achieved for TM-polarized modes close to the modal cutoff. Due to its compactness and the short operation wavelength, we anticipate applications of our resonator for integrated bioanalytics.

Collaboration


Dive into the Matthias Zeisberger's collaboration.

Top Co-Authors

Avatar

Markus A. Schmidt

Leibniz Institute of Photonic Technology

View shared research outputs
Top Co-Authors

Avatar

Henrik Schneidewind

Leibniz Institute of Photonic Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karina Weber

Leibniz Institute of Photonic Technology

View shared research outputs
Top Co-Authors

Avatar

Uwe Hübner

Leibniz Institute of Photonic Technology

View shared research outputs
Top Co-Authors

Avatar

Jürgen Popp

Leibniz Institute of Photonic Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Mattheis

Leibniz Institute of Photonic Technology

View shared research outputs
Top Co-Authors

Avatar

Uwe Huebner

Leibniz Institute of Photonic Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge