Matthieu Bugnet
McMaster University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthieu Bugnet.
ACS Nano | 2013
Sagar Prabhudev; Matthieu Bugnet; Christina Bock
Fine-tuning nanocatalysts to enhance their catalytic activity and durability is crucial to commercialize proton exchange membrane fuel cells. The structural ordering and time evolution of ordered Pt3Fe2 intermetallic core-shell nanocatalysts for the oxygen reduction reaction that exhibit increased mass activity (228%) and an enhanced catalytic activity (155%) compared to Pt/C has been quantified using aberration-corrected scanning transmission electron microscopy. These catalysts were found to exhibit a static core-dynamic shell regime wherein, despite treating over 10,000 cycles, there is negligible decrease (9%) in catalytic activity and the ordered Pt3Fe2 core remained virtually intact while the Pt shell suffered a continuous enrichment. The existence of this regime was further confirmed by X-ray diffraction and the compositional analyses using energy-dispersive spectroscopy. With atomic-scale two-dimensional (2-D) surface relaxation mapping, we demonstrate that the Pt atoms on the surface are slightly relaxed with respect to bulk. The cycled nanocatalysts were found to exhibit a greater surface relaxation compared to noncycled catalysts. With 2-D lattice strain mapping, we show that the particle was about -3% strained with respect to pure Pt. While the observed enhancement in their activity is ascribed to such a strained lattice, our findings on the degradation kinetics establish that their extended catalytic durability is attributable to a sustained atomic order.
Nano Letters | 2015
Songrui Zhao; S. Y. Woo; Matthieu Bugnet; X. Liu; J. Kang; Zetian Mi
We report on the molecular beam epitaxial growth and structural characterization of self-organized AlGaN nanowire arrays on Si substrate with high luminescence efficiency emission in the deep ultraviolet (UV) wavelength range. It is found that, with increasing Al concentration, atomic-scale compositional modulations can be realized, leading to three-dimensional quantum confinement of charge carriers. By further exploiting the Anderson localization of light, we have demonstrated, for the first time, electrically injected AlGaN lasers in the deep UV band operating at room temperature. The laser operates at ∼289 nm and exhibits a threshold of 300 A/cm(2), which is significantly smaller compared to the previously reported electrically injected AlGaN multiple quantum well lasers.
Journal of Physics D | 2016
Zetian Mi; Songrui Zhao; S. Y. Woo; Matthieu Bugnet; Mehrdad Djavid; X. Liu; J. Kang; Xianghua Kong; Wei Ji; Hong Guo; Zongshun Liu
We report on the detailed molecular beam epitaxial growth and characterization of Al(Ga)N nanowire heterostructures on Si and their applications for deep ultraviolet light emitting diodes and lasers. The nanowires are formed under nitrogen-rich conditions without using any metal catalyst. Compared to conventional epilayers, Mg-dopant incorporation is significantly enhanced in nearly strain- and defect-free Al(Ga)N nanowire structures, leading to efficient p-type conduction. The resulting Al(Ga)N nanowire LEDs exhibit excellent performance, including a turn-on voltage of ~5.5 V for an AlN nanowire LED operating at 207 nm. The design, fabrication, and performance of an electrically injected AlGaN nanowire laser operating in the UV-B band is also presented.
Journal of Physics: Condensed Matter | 2014
M. Jaouen; Matthieu Bugnet; N Jaouen; P Ohresser; V Mauchamp; A. Rogalev
From x-ray magnetic circular dichroism experiments performed at low temperature on Cr2AlC and Cr2GeC thin films, it is evidenced that Cr atoms carry a net magnetic moment in these ternary phases. It is shown that the Cr magnetization of the Al-based compound nearly vanished at 100 K in agreement with what has been recently observed on bulk. X-ray linear dichroism measurements performed at various angles of incidence and temperatures clearly demonstrate the existence of a charge ordering along the c axis of the structure of Cr2AlC. All these experimental observations support, in part, theoretical calculations claiming that Cr dd correlations have to be considered to correctly describe the structure and properties of these Cr-based ternary phases.
Physical Chemistry Chemical Physics | 2016
Hanshuo Liu; Matthieu Bugnet; Matteo Z. Tessaro; Kristopher J. Harris; Mark J.R. Dunham; Meng Jiang; Gillian R. Goward
Layered lithium transition metal oxides are one of the most important types of cathode materials in lithium-ion batteries (LIBs) that possess high capacity and relatively low cost. Nevertheless, these layered cathode materials suffer structural changes during electrochemical cycling that could adversely affect the battery performance. Clear explanations of the cathode degradation process and its initiation, however, are still under debate and not yet fully understood. We herein systematically investigate the chemical evolution and structural transformation of the LiNixMnyCo1-x-yO2 (NMC) cathode material in order to understand the battery performance deterioration driven by the cathode degradation upon cycling. Using high-resolution electron energy loss spectroscopy (HR-EELS) we clarify the role of transition metals in the charge compensation mechanism, particularly the controversial Ni2+ (active) and Co3+ (stable) ions, at different states-of-charge (SOC) under 4.6 V operation voltage. The cathode evolution is studied in detail from the first-charge to long-term cycling using complementary diagnostic tools. With the bulk sensitive 7Li nuclear magnetic resonance (NMR) measurements, we show that the local ordering of transition metal and Li layers (R3[combining macron]m structure) is well retained in the bulk material upon cycling. In complement to the bulk measurements, we locally probe the valence state distribution of cations and the surface structure of NMC particles using EELS and scanning transmission electron microscopy (STEM). The results reveal that the surface evolution of NMC is initiated in the first-charging step with a surface reduction layer formed at the particle surface. The NMC surface undergoes phase transformation from the layered structure to a poor electronic and ionic conducting transition-metal oxide rock-salt phase (R3[combining macron]m → Fm3[combining macron]m), accompanied by irreversible lithium and oxygen loss. In addition to the electrochemical cycling effect, electrolyte exposure also shows non-negligible influence on cathode surface degradation. These chemical and structural changes of the NMC cathode could contribute to the first-cycle coulombic inefficiency, restrict the charge transfer characteristics and ultimately impact the cell capacity.
Nano Letters | 2015
S. Y. Woo; Matthieu Bugnet; Hieu Pham Trung Nguyen; Zetian Mi
Ternary III-nitride based nanowires (NWs) are promising for optoelectronic applications by offering advantageous design and control over composition, structure, and strain. Atomic-level chemical ordering in wurtzite InGaN alloys along the c-plane direction with a 1:1 periodicity within InGaN/GaN NW heterostructures was investigated by scanning transmission electron microscopy. Atomic-number-sensitive imaging contrast was used to simultaneously assign the In-rich and Ga-rich planes and determine the crystal polarity to differentiate unique sublattice sites. The nonrandom occupation of the c-planes in the InGaN alloys is confirmed by the occurrence of additional superlattice spots in the diffraction pattern within the ternary alloy. Compositional modulations in the ordered InGaN was further studied using atomic-resolution elemental mapping, outlining the substantial In-enrichment. Confirming the preferential site occupation of In-atoms provides experimental validation for the previous theoretical model of ordered InGaN alloys in bulk epilayers based on differences in surface site energy. Therefore, this study strongly suggests that atomic ordering in InGaN has a surface energetics-induced origin. Optimization of atomic ordering, in particular in III-nitride NW heterostructures, could be an alternative design tool toward desirable structural and compositional properties for various device applications operating at longer visible wavelengths.
Applied Physics Letters | 2014
Guo-zhen Zhu; Tahereh Majdi; Yang Shao; Matthieu Bugnet; John S. Preston
A unique metal/oxide interfacial bilayer formed between Au nanoparticles and MgAl2O4 substrates following thermal treatment is reported. Associated with the formation of the bilayer was the onset of an abnormal epitaxial growth of the substrate under the nanoparticle. According to the redistribution of atoms and the changes of their electronic structure probed across the interface by a transmission electron microscopy, we suggest two possible atomic models of the interfacial bilayer.
RSC Advances | 2015
Nader Farahi; Sagar Prabhudev; Matthieu Bugnet; Jianbao Zhao; John S. Tse; James R. Salvador; Holger Kleinke
The effect of multi wall carbon nanotubes (CNT) on the thermoelectric properties of Mg2Si0.877Ge0.1Bi0.023 was examined. While introducing CNTs increases the electrical conductivity from around 450 Ω−1 cm−1 to 500 Ω−1 cm−1 at 323 K, the increase is neutralized at higher temperature, with the conductivity resulting to be 440 Ω−1 cm−1–470 Ω−1 cm−1 at 773 K. The Seebeck coefficient of all nanocomposites is enhanced at 773 K due to energy filtering that stems from the introduction of CNTs–Mg2Si0.877Ge0.1Bi0.023 interfaces. The combined effect of CNTs on Seebeck coefficient and electrical conductivity leads to an approximately 20% power factor improvement, with the best sample reaching a maximum value of ∼19 μW cm−1 K−2 at 773 K. The lattice thermal conductivity of the nanocomposites is reduced due to the phonon scattering by nanodomains and grain boundaries, particularly at medium temperatures, resulting in a slight reduction in total thermal conductivity. According to high resolution transmission electron microscopy studies, bismuth is homogenously distributed within the grains, while germanium is accumulated at the grain boundaries. All in all, the enhanced thermoelectric figure of merit of 0.67 at 773 K for the sample containing 0.5 weight% MWCNT as compared to 0.55 for the pristine sample, demonstrates the promising effect of CNTs on the thermoelectric properties of Mg2Si0.877Ge0.1Bi0.023.
Chemcatchem | 2015
Sagar Prabhudev; Matthieu Bugnet; Guo-zhen Zhu; Christina Bock
Coupling electron microscopy techniques with in situ heating ability allows us to study phase transformations on the single‐nanoparticle level. We exploit this setup to study disorder‐to‐order transformation of Pt–Fe alloy nanoparticles, a material that is of great interest to fuel‐cell electrocatalysis and ultrahigh density information storage. In contrast to earlier reports, we show that Fe (instead of Pt) segregates towards the particle surface during annealing and forms a Fe‐rich FeOx outer shell over the alloy core. By combining both ex situ and in situ approaches to probe the interplay between ordering and surface‐segregation phenomena, we illustrate that the surface segregation of Fe precedes the ordering process and affects the ordered phase evolution dramatically. We show that the ordering initiates preferably at the pre‐existent Fe‐rich shell than the particle core. While the material‐specific findings from this study open interesting perspectives towards a controlled phase evolution of Pt–Fe nanoalloys, the characterization methodologies described are general and should prove useful to probing a wide‐range of nanomaterials.
ACS Nano | 2017
Z. Liu; J. Siegel; Mario Garcia-Lechuga; Thierry Epicier; Yaya Lefkir; Stéphanie Reynaud; Matthieu Bugnet; Francis Vocanson; J. Solis; Guy Vitrant; Nathalie Destouches
Controlling plasmonic systems with nanometer resolution in transparent films and their colors over large nonplanar areas is a key issue for spreading their use in various industrial fields. Using light to direct self-organization mechanisms provides high-speed and flexible processes to meet this challenge. Here, we describe a route for the laser-induced self-organization of metallic nanostructures in 3D. Going beyond the production of planar nanopatterns, we demonstrate that ultrafast laser-induced excitation combined with nonlinear feedback mechanisms in a nanocomposite thin film can lead to 3D self-organized nanostructured films. The process, which can be extended to complex layered composite systems, produces highly uniform large-area nanopatterns. We show that 3D self-organization originates from the simultaneous excitation of independent optical modes at different depths in the film and is activated by the plasmon-induced charge separation and thermally induced NP growth mechanisms. This laser color marking technique enables multiplexed optical image encoding and the generated nanostructured Ag NPs:TiO2 films offer great promise for applications in solar energy harvesting, photocatalysis, or photochromic devices.