Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthieu Chabannes is active.

Publication


Featured researches published by Matthieu Chabannes.


Plant Physiology | 2002

Laccase Down-Regulation Causes Alterations in Phenolic Metabolism and Cell Wall Structure in Poplar

Philippe Ranocha; Matthieu Chabannes; Simon Chamayou; Saïda Danoun; Alain Jauneau; Alain-Michel Boudet; Deborah Goffner

Laccases are encoded by multigene families in plants. Previously, we reported the cloning and characterization of five divergent laccase genes from poplar (Populus trichocarpa) xylem. To investigate the role of individual laccase genes in plant development, and more particularly in lignification, three independent populations of antisense poplar plants, lac3AS, lac90AS, andlac110AS with significantly reduced levels of laccase expression were generated. A repression of laccase gene expression had no effect on overall growth and development. Moreover, neither lignin content nor composition was significantly altered as a result of laccase suppression. However, one of the transgenic populations,lac3AS, exhibited a 2- to 3-fold increase in total soluble phenolic content. As indicated by toluidine blue staining, these phenolics preferentially accumulate in xylem ray parenchyma cells. In addition, light and electron microscopic observations oflac3AS stems indicated that lac3 gene suppression led to a dramatic alteration of xylem fiber cell walls. Individual fiber cells were severely deformed, exhibiting modifications in fluorescence emission at the primary wall/middle lamella region and frequent sites of cell wall detachment. Although a direct correlation between laccase gene expression and lignification could not be assigned, we show that the gene product of lac3 is essential for normal cell wall structure and integrity in xylem fibers.lac3AS plants provide a unique opportunity to explore laccase function in plants.


Plant Physiology | 2007

#S#-Nitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically

Christine Rustérucci; M. Carme Espunya; Maykelis Díaz; Matthieu Chabannes; M. Carmen Martínez

Nitric oxide and S-nitrosothiols (SNOs) are widespread signaling molecules that regulate immunity in animals and plants. Levels of SNOs in vivo are controlled by nitric oxide synthesis (which in plants is achieved by different routes) and by S-nitrosoglutathione turnover, which is mainly performed by the S-nitrosoglutathione reductase (GSNOR). GSNOR is encoded by a single-copy gene in Arabidopsis (Arabidopsis thaliana; Martínez et al., 1996; Sakamoto et al., 2002). We report here that transgenic plants with decreased amounts of GSNOR (using antisense strategy) show enhanced basal resistance against Peronospora parasitica Noco2 (oomycete), which correlates with higher levels of intracellular SNOs and constitutive activation of the pathogenesis-related gene, PR-1. Moreover, systemic acquired resistance is impaired in plants overexpressing GSNOR and enhanced in the antisense plants, and this correlates with changes in the SNO content both in local and systemic leaves. We also show that GSNOR is localized in the phloem and, thus, could regulate systemic acquired resistance signal transport through the vascular system. Our data corroborate the data from other authors that GSNOR controls SNO in vivo levels, and shows that SNO content positively influences plant basal resistance and resistance-gene-mediated resistance as well. These data highlight GSNOR as an important and widely utilized component of resistance protein signaling networks conserved in animals and plants.


Biochimica et Biophysica Acta | 1999

A family of Arabidopsis plasma membrane receptors presenting animal beta-integrin domains.

Valérie Laval; Matthieu Chabannes; Marguerite Carrière; Hervé Canut; Annick Barre; Pierre Rougé; Rafael Pont-Lezica; Jean-Philippe Galaud

A cDNA clone, AtELP1 (Arabidopsis thaliana EGF receptor-like protein) was isolated from an Arabidopsis cDNA library with an oligonucleotide probe corresponding to a highly conserved region of animal beta-integrins. The cloning of this cDNA was previously reported and it has been proposed that AtELP might be a receptor involved in intracellular trafficking. In the present work, using two specific independent sets of anti-peptide antibodies, we show that AtELP1 is mainly located in the plasma membrane, supporting another function for this protein. Structural studies, using methods for secondary structure prediction, indicated the presence of cysteine-rich domains specific to beta-integrins. Database searches revealed that AtELP1 is a member of a multigenic family composed of at least six members in A. thaliana. Northern blot analysis of AtELP1, 2b and 3 was performed on mRNA extracted from cells cultured in normal and stressed conditions, and from several organs and plants submitted to biotic or abiotic stresses. All the genes are expressed at different levels in the same conditions, but preferentially in roots, fruits and leaves in response to water deficit.


Cell Host & Microbe | 2015

The Decoy Substrate of a Pathogen Effector and a Pseudokinase Specify Pathogen-Induced Modified-Self Recognition and Immunity in Plants

Guoxun Wang; Brice Roux; Feng Feng; Endrick Guy; Lin Li; Nannan Li; Xiaojuan Zhang; Martine Lautier; Marie-Françoise Jardinaud; Matthieu Chabannes; Matthieu Arlat; She Chen; Chaozu He; Laurent D. Noël; Jian-Min Zhou

In plants, host response to pathogenic microbes is driven both by microbial perception and detection of modified-self. The Xanthomonas campestris effector protein AvrAC/XopAC uridylylates the Arabidopsis BIK1 kinase to dampen basal resistance andxa0thereby promotes bacterial virulence. Here we show that PBL2, a paralog of BIK1, is similarly uridylylated by AvrAC. However, in contrast to BIK1, PBL2 uridylylation is specifically required for host recognition of AvrAC to trigger immunity, but not AvrAC virulence. PBL2 thus acts as a decoy and enables AvrAC detection. AvrAC recognition also requires the RKS1 pseudokinase of the ZRK family and the NOD-like receptor ZAR1, which is known to recognize the Pseudomonas syringae effector HopZ1a. ZAR1 forms a stable complex with RKS1, which specifically recruits PBL2 when the latter is uridylylated by AvrAC, triggering ZAR1-mediated immunity. The results illustrate how decoy substrates and pseudokinases can specify and expand the capacity of the plant immune system.


Phytochemistry | 2001

Reassessment of qualitative changes in lignification of transgenic tobacco plants and their impact on cell wall assembly

Katia Ruel; Matthieu Chabannes; Alain-Michel Boudet; Michel Legrand; Jean-Paul Joseleau

In tobacco plants the effect of antisense down-regulation of various genes encoding enzymes of the monolignol biosynthetic pathway resulted in quantitative and qualitative changes in lignin distribution and in diverse alterations of the secondary wall assembly of modified tobacco plants. Total lignin content, composition in syringyl and guaiacyl units, and absolute proportions of condensed and non-condensed substructures occurring in the cell walls, were differentially modified according to the repressed gene. Immunocytochemical characterisation and visualisation of the distribution of condensed and non-condensed lignin substructure epitopes in transmission electron microscopy (TEM) revealed that some transformations entailed profound and specific alterations in the secondary wall biogenesis. Correlation between micro-morphological cell wall alterations and semi-quantitative immuno-analysis of the topochemical distribution of lignin sub-units suggests that the mode of polymerisation of monolignols into non-condensed units, favoured by the microfibril matrix of the secondary wall, plays an important part in the lignified cell wall assembly.


PLOS ONE | 2013

xopAC-triggered immunity against Xanthomonas depends on Arabidopsis receptor-like cytoplasmic kinase genes PBL2 and RIPK.

Endrick Guy; Martine Lautier; Matthieu Chabannes; Brice Roux; Emmanuelle Lauber; Matthieu Arlat; Laurent D. Noël

Xanthomonas campestris pv. campestris (Xcc) colonizes the vascular system of Brassicaceae and ultimately causes black rot. In susceptible Arabidopsis plants, XopAC type III effector inhibits by uridylylation positive regulators of the PAMP-triggered immunity such as the receptor-like cytoplasmic kinases (RLCK) BIK1 and PBL1. In the resistant ecotype Col-0, xopAC is a major avirulence gene of Xcc. In this study, we show that both the RLCK interaction domain and the uridylyl transferase domain of XopAC are required for avirulence. Furthermore, xopAC can also confer avirulence to both the vascular pathogen Ralstonia solanacearum and the mesophyll-colonizing pathogen Pseudomonas syringae indicating that xopAC-specified effector-triggered immunity is not specific to the vascular system. In planta, XopAC-YFP fusions are localized at the plasma membrane suggesting that XopAC might interact with membrane-localized proteins. Eight RLCK of subfamily VII predicted to be localized at the plasma membrane and interacting with XopAC in yeast two-hybrid assays have been isolated. Within this subfamily, PBL2 and RIPK RLCK genes but not BIK1 are important for xopAC-specified effector-triggered immunity and Arabidopsis resistance to Xcc.


Mbio | 2013

Natural Genetic Variation of Xanthomonas campestris pv. campestris Pathogenicity on Arabidopsis Revealed by Association and Reverse Genetics

Endrick Guy; Anne Genissel; Ahmed Hajri; Matthieu Chabannes; Perrine David; Sébastien Carrère; Martine Lautier; Brice Roux; Tristan Boureau; Matthieu Arlat; Stéphane Poussier; Laurent D. Noël

ABSTRACT The pathogenic bacterium Xanthomonas campestris pv. campestris, the causal agent of black rot of Brassicaceae, manipulates the physiology and the innate immunity of its hosts. Association genetic and reverse-genetic analyses of a world panel of 45 X. campestris pv. campestris strains were used to gain understanding of the genetic basis of the bacterium’s pathogenicity to Arabidopsis thaliana. We found that the compositions of the minimal predicted type III secretome varied extensively, with 18 to 28 proteins per strain. There were clear differences in aggressiveness of those X. campestris pv. campestris strains on two Arabidopsis natural accessions. We identified 3 effector genes (xopAC, xopJ5, and xopAL2) and 67 amplified fragment length polymorphism (AFLP) markers that were associated with variations in disease symptoms. The nature and distribution of the AFLP markers remain to be determined, but we observed a low linkage disequilibrium level between predicted effectors and other significant markers, suggesting that additional genetic factors make a meaningful contribution to pathogenicity. Mutagenesis of type III effectors in X. campestris pv. campestris confirmed that xopAC functions as both a virulence and an avirulence gene in Arabidopsis and that xopAM functions as a second avirulence gene on plants of the Col-0 ecotype. However, we did not detect the effect of any other effector in the X. campestris pv. campestris 8004 strain, likely due to other genetic background effects. These results highlight the complex genetic basis of pathogenicity at the pathovar level and encourage us to challenge the agronomical relevance of some virulence determinants identified solely in model strains. IMPORTANCE The identification and understanding of the genetic determinants of bacterial virulence are essential to be able to design efficient protection strategies for infected plants. The recent availability of genomic resources for a limited number of pathogen isolates and host genotypes has strongly biased our research toward genotype-specific approaches. Indeed, these do not consider the natural variation in both pathogens and hosts, so their applied relevance should be challenged. In our study, we exploited the genetic diversity of Xanthomonas campestris pv. campestris, the causal agent of black rot on Brassicaceae (e.g., cabbage), to mine for pathogenicity determinants. This work evidenced the contribution of known and unknown loci to pathogenicity relevant at the pathovar level and identified these virulence determinants as prime targets for breeding resistance to X. campestris pv. campestris in Brassicaceae. The identification and understanding of the genetic determinants of bacterial virulence are essential to be able to design efficient protection strategies for infected plants. The recent availability of genomic resources for a limited number of pathogen isolates and host genotypes has strongly biased our research toward genotype-specific approaches. Indeed, these do not consider the natural variation in both pathogens and hosts, so their applied relevance should be challenged. In our study, we exploited the genetic diversity of Xanthomonas campestris pv. campestris, the causal agent of black rot on Brassicaceae (e.g., cabbage), to mine for pathogenicity determinants. This work evidenced the contribution of known and unknown loci to pathogenicity relevant at the pathovar level and identified these virulence determinants as prime targets for breeding resistance to X. campestris pv. campestris in Brassicaceae.


Pure and Applied Chemistry | 2001

Gains achieved by molecular approaches in the area of lignification

Alain-Michel Boudet; Matthieu Chabannes

In this article we highlight the contribution of molecular biology and lignin genetic engineering toward a better understanding of lignin biosynthesis and spatio-temporal deposition of lignin. Specific examples from the literature and from our laboratory will serve to underline the chemical flexibility of lignins, the complexity of the regulatory circuits involved in their synthesis, and the specific behavior of different cell types within the xylem. We will also focus on strategies aiming to reduce the lignin content or to modify the lignin composition of plants and present their impact on plant development. We will show that the ectopic expression of a specific transgene may have a different impact, depending on the genetic background, and that plants with a severe reduction in lignin content may undergo normal development. Lignification is currently benefiting enormously from recent developments in molecular biology and transgenesis, and the progress made opens the way for future developments to study how the walls of lignified plant cells are built and organized.


Plant Journal | 2001

In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels.

Matthieu Chabannes; Katia Ruel; Arata Yoshinaga; Brigitte Chabbert; Alain Jauneau; Jean-Paul Joseleau; Alain-Michel Boudet


Archive | 2014

XopAC-mediated resistance to #Xanthomonas# in Arabidopsis [CS-21.6]

Brice Roux; Endrick Guy; Martine Lautier; Matthieu Chabannes; Mathieu Arlat; Laurent D. Noel

Collaboration


Dive into the Matthieu Chabannes's collaboration.

Top Co-Authors

Avatar

Endrick Guy

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mathieu Arlat

Paul Sabatier University

View shared research outputs
Top Co-Authors

Avatar

Brice Roux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Martine Lautier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Ahmed Hajri

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain-Michel Boudet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Laurent D. Noël

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge