Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthieu Chodorge is active.

Publication


Featured researches published by Matthieu Chodorge.


Cancer immunology research | 2015

Identification and Characterization of MEDI4736, an Antagonistic Anti–PD-L1 Monoclonal Antibody

Ross Stewart; Michelle Morrow; Scott A. Hammond; Kathy Mulgrew; Danielle Marcus; Edmund Poon; Amanda Watkins; Stefanie Mullins; Matthieu Chodorge; John Andrews; David Bannister; Emily Dick; Nicola Crawford; Julie Parmentier; Marat Alimzhanov; John Babcook; Ian Foltz; Andrew Buchanan; Vahe Bedian; Robert W. Wilkinson; Matthew McCourt

A human antibody to PD-L1, engineered to eliminate Fc effector functions, which potently inhibits PD-L1 function, is in phase III clinical trials. Its characterization here provides clinicians and researchers with a basis for understanding and interpreting clinical trial results. Programmed cell-death 1 ligand 1 (PD-L1) is a member of the B7/CD28 family of proteins that control T-cell activation. Many tumors can upregulate expression of PD-L1, inhibiting antitumor T-cell responses and avoiding immune surveillance and elimination. We have identified and characterized MEDI4736, a human IgG1 monoclonal antibody that binds with high affinity and specificity to PD-L1 and is uniquely engineered to prevent antibody-dependent cell-mediated cytotoxicity. In vitro assays demonstrate that MEDI4736 is a potent antagonist of PD-L1 function, blocking interaction with PD-1 and CD80 to overcome inhibition of primary human T-cell activation. In vivo MEDI4736 significantly inhibits the growth of human tumors in a novel xenograft model containing coimplanted human T cells. This activity is entirely dependent on the presence of transplanted T cells, supporting the immunological mechanism of action for MEDI4736. To further determine the utility of PD-L1 blockade, an anti-mouse PD-L1 antibody was investigated in immunocompetent mice. Here, anti-mouse PD-L1 significantly improved survival of mice implanted with CT26 colorectal cancer cells. The antitumor activity of anti–PD-L1 was enhanced by combination with oxaliplatin, which resulted in increased release of HMGB1 within CT26 tumors. Taken together, our results demonstrate that inhibition of PD-L1 function can have potent antitumor activity when used as monotherapy or in combination in preclinical models, and suggest it may be a promising therapeutic approach for the treatment of cancer. MEDI4736 is currently in several clinical trials both alone and in combination with other agents, including anti–CTLA-4, anti–PD-1, and inhibitors of IDO, MEK, BRAF, and EGFR. Cancer Immunol Res; 3(9); 1052–62. ©2015 AACR.


mAbs | 2009

Human monomeric antibody fragments to TRAIL-R1 and TRAIL-R2 that display potent in vitro agonism

Claire Louise Dobson; Sarah Helen Main; Philip Newton; Matthieu Chodorge; Karen Cadwallader; Robin Humphreys; Vivian Albert; Tristan J. Vaughan; Ralph Minter; Bryan M. Edwards

Apoptosis through the TRAIL receptor pathway can be induced via agonistic IgG to either TRAIL-R1 or TRAIL-R2. Here we describe the use of phage display to isolate a substantive panel of fully human anti-TRAIL receptor single chain Fv fragments (scFvs); 234 and 269 different scFvs specific for TRAIL-R1 and TRAIL-R2 respectively. In addition, 134 different scFvs that were cross-reactive for both receptors were isolated. To facilitate screening of all 637 scFvs for potential agonistic activity in vitro, a novel high-throughput surrogate apoptosis assay was developed. Ten TRAIL-R1 specific scFv and 6 TRAIL-R2 specific scFv were shown to inhibit growth of tumor cells in vitro in the absence of any cross-linking agents. These scFv were all highly specific for either TRAIL-R1 or TRAIL-R2, potently inhibited tumor cell proliferation, and were antagonists of TRAIL binding. Moreover, further characterization of TRAIL-R1 agonistic scFv demonstrated significant anti-tumor activity when expressed and purified as a monomeric Fab fragment. Thus, scFv and Fab fragments, in addition to whole IgG, can be agonistic and induce tumor cell death through specific binding to either TRAIL-R1 or TRAIL-R2. These potent agonistic scFv were all isolated directly from the starting phage antibody library and demonstrated significant tumor cell killing properties without any requirement for affinity maturation. Some of these selected scFv have been converted to IgG format and are being studied extensively in clinical trials to investigate their potential utility as human monoclonal antibody therapeutics for the treatment of human cancer.


Protein Engineering Design & Selection | 2008

In vitro DNA recombination by L-Shuffling during ribosome display affinity maturation of an anti-Fas antibody increases the population of improved variants

Matthieu Chodorge; Laurent Fourage; Gilles Ravot; Lutz Jermutus; Ralph Minter

The use of random mutagenesis in concert with protein display technologies to rapidly select high affinity antibody variants is an established methodology. In some cases, DNA recombination has been included in the strategy to enable selection of mutations which act cooperatively to improve antibody function. In this study, the impact of L-Shuffling DNA recombination on the eventual outcome of an in vitro affinity maturation has been experimentally determined. Parallel evolution strategies, with and without a recombination step, were carried out and both methods improved the affinity of an anti-Fas single chain variable fragment (scFv). The recombination step resulted in an increased population of affinity-improved variants. Moreover, the most improved variant, with a 22-fold affinity gain, emerged only from the recombination-based approach. An analysis of mutations preferentially selected in the recombined population demonstrated strong cooperative effects when tested in combination with other mutations but small, or even negative, effects on affinity when tested in isolation. These results underline the ability of combinatorial library approaches to explore very large regions of sequence space to find optimal solutions in antibody evolution studies.


OncoImmunology | 2017

MEDI1873, a potent, stabilized hexameric agonist of human GITR with regulatory T-cell targeting potential

Natalie Tigue; Lisa Bamber; John Andrews; Samantha Ireland; James Hair; Edward Carter; Sudharsan Sridharan; Jelena Jovanović; D. Gareth Rees; Jeremy S. Springall; Emilie Solier; Yi-Ming Li; Matthieu Chodorge; David Perez-Martinez; Daniel R. Higazi; Michael Oberst; Maureen Kennedy; Chelsea Black; Li Yan; Martin Schwickart; Shaun Maguire; Jennifer Cann; Lolke de Haan; Lesley Young; Tristan J. Vaughan; Robert W. Wilkinson; Ross Stewart

ABSTRACT Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) is part of a system of signals involved in controlling T-cell activation. Targeting and agonizing GITR in mice promotes antitumor immunity by enhancing the function of effector T cells and inhibiting regulatory T cells. Here, we describe MEDI1873, a novel hexameric human GITR agonist comprising an IgG1 Fc domain, a coronin 1A trimerization domain and the human GITRL extracellular domain (ECD). MEDI1873 was optimized through systematic testing of different trimerization domains, aglycosylation of the GITRL ECD and comparison of different Fc isotypes. MEDI1873 exhibits oligomeric heterogeneity and superiority to an anti-GITR antibody with respect to evoking robust GITR agonism, T-cell activation and clustering of Fc gamma receptors. Further, it recapitulates, in vitro, several aspects of GITR targeting described in mice, including modulation of regulatory T-cell suppression and the ability to increase the CD8+:CD4+ T-cell ratio via antibody-dependent T-cell cytotoxicity. To support translation into a therapeutic setting, we demonstrate that MEDI1873 is a potent T-cell agonist in vivo in non-human primates, inducing marked enhancement of humoral and T-cell proliferative responses against protein antigen, and demonstrate the presence of GITR- and FoxP3-expressing infiltrating lymphocytes in a range of human tumors. Overall our data provide compelling evidence that MEDI1873 is a novel, potent GITR agonist with the ability to modulate T-cell responses, and suggest that previously described GITR biology in mice may translate to the human setting, reinforcing the potential of targeting the GITR pathway as a therapeutic approach to cancer.


Analytical Chemistry | 2017

Rate of Asparagine Deamidation in a Monoclonal Antibody Correlating with Hydrogen Exchange Rate at Adjacent Downstream Residues

Jonathan J. Phillips; Andrew Buchanan; John T. Andrews; Matthieu Chodorge; Sudharsan Sridharan; Laura Mitchell; Nicole Burmeister; Alistair D. Kippen; Tristan J. Vaughan; Daniel R. Higazi; David J. Lowe

Antibodies are an important class of drugs, comprising more than half of all new FDA approvals. Therapeutic antibodies must be chemically stable both in storage and in vivo, following administration to patients. Deamidation is a major degradation pathway for all natural and therapeutic proteins circulating in blood. Here, the linkage between deamidation propensity and structural dynamics is investigated by examining two antibodies with differing specificities. While both antibodies share a canonical asparagine-glycine (NG) motif in a structural loop, this is prone to deamidation in one of the antibodies but not the other. We found that the hydrogen-exchange rate at the adjacent two amides, often the autocatalytic nucleophiles in deamidation, correlated with the rate of degradation. This previously unreported observation was confirmed upon mutation to stabilize the deamidation lability via a generally applicable orthogonal engineering strategy presented here. We anticipate that the structural insight into chemical degradation in full-length monoclonal antibodies and the high-resolution hydrogen-exchange methodology used will have broad application across biochemical study and drug discovery and development.


Cancer Research | 2011

Abstract LB-158: MEDI4736: Delivering effective blockade of immunosupression to enhance tumour rejection: Monoclonal antibody discovery and preclinical development

Ross Stewart; Michelle Morrow; Matthieu Chodorge; Danielle Marcus; Melanie Boyle; Kathy Mulgrew; Scott A. Hammond; Suping Wang; Marat Alimzhanov; Paul B. Robbins; Karen Lanning; Vahe Bedian; Matthew McCourt; Mathew Lo

Cancerous cells emerge within the body following accumulation of deleterious genetic mutations. These mutations alter the phenotype of a cancer cell marking it as distinct from the surrounding host; an immunological state termed “altered self”. These cells, like other non-self entities such as viruses and bacteria, are recognised by the immune system and marked for destruction, a process known as “immune surveillance”. B7-H1 expression by tumour cells is believed to aid tumours in evading detection and elimination by the immune system. B7-H1 functions in this respect via several alternative mechanisms including driving exhaustion and anergy of tumour infiltrating T lymphocytes, stimulating secretion of immune repressive cytokines into the tumour micro-environment, stimulating repressive regulatory T cell function and protecting B7-H1 expressing tumour cells from lysis by tumour cell specific cytotoxic T cells. Using hybridoma technology and high throughput screening MedImmune has identified a series of fully human antibodies specific for human B7-H1. Further characterisation of these antibodies led to the identification of a single high affinity antibody, MEDI 4736, with the ability to relieve B7-H1 mediated suppression of T cell activation in vitro and to enhance sub-optimal T cell activation in a mixed lymphocyte reaction. In vitro testing shows that MEDI 4736 does not trigger non-specific cytokine release in whole blood, and is only able to activate T cells in the context of an active T cell receptor signal. A surrogate anti-mouse B7-H1 antibody shows significant anti-tumour activity in a syngeneic model when dosed in combination with chemotherapy. Similarly MEDI 4736 is able to inhibit tumour growth in a novel in vivo xenograft model, via a mechanism that is dependent on the presence of tumour specific human T cells. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr LB-158. doi:10.1158/1538-7445.AM2011-LB-158


Scientific Reports | 2016

A Shorter Route to Antibody Binders via Quantitative in vitro Bead-Display Screening and Consensus Analysis

Sylwia A. Mankowska; Pietro Gatti-Lafranconi; Matthieu Chodorge; Sudharsan Sridharan; Ralph Minter; Florian Hollfelder

Affinity panning of large libraries is a powerful tool to identify protein binders. However, panning rounds are followed by the tedious re-screening of the clones obtained to evaluate binders precisely. In a first application of Bead Surface Display (BeSD) we show successful in vitro affinity selections based on flow cytometric analysis that allows fine quantitative discrimination between binders. Subsequent consensus analysis of the resulting sequences enables identification of clones that bind tighter than those arising directly from the experimental selection output. This is demonstrated by evolution of an anti-Fas receptor single-chain variable fragment (scFv) that was improved 98-fold vs the parental clone. Four rounds of quantitative screening by fluorescence-activated cell sorting of an error-prone library based on fine discrimination between binders in BeSD were followed by analysis of 200 full-length output sequences that suggested a new consensus design with a Kd ∼140 pM. This approach shortens the time and effort to obtain high affinity reagents and its cell-free nature transcends limitations inherent in previous in vivo display systems.


Archive | 2010

Targeted binding agents against b7-h1

Christophe Queva; Michelle Morrow; Scott A. Hammond; Marat Alimzhanov; John Babcook; Ian Foltz; Jaspal Singh Kang; Laura Sekirov; Melanie Boyle; Matthieu Chodorge; Ross Stewart; Kathleen Ann Mulgrew


Archive | 2005

Method Of Determining The Mutational Load Of A Gene Library Obtained By Random Mutagenesis Of A Particular Gene And Means For Implementing Same

Matthieu Chodorge; Laurent Fourage; Fabrice Lefevre; Jean-Michel Masson


Archive | 2015

Anti-pcsk9~glp-1 fusions and methods for use

Anthony Celeste; Matthieu Chodorge; Andrew Buchanan; Cristina M. Rondinone; Joseph Grimsby; Peter Ravn; Jonathan Seaman; David Fairman

Collaboration


Dive into the Matthieu Chodorge's collaboration.

Researchain Logo
Decentralizing Knowledge